New Nomographic Solutions in the Newtonian Many-Body Problem

被引:0
|
作者
Grebenikov, E. A. [1 ]
Zemtsova, N. I. [1 ]
机构
[1] Russian Acad Sci, Dorodnitsyn Comp Ctr, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1547477111050104
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The problem of the existence of concentric central configurations, geometrically presented by regular n-and 2n-sided polygons nested in one another, is investigated. The necessary and sufficient conditions for the existence of these central configurations are derived using computer algebra.
引用
收藏
页码:428 / 430
页数:3
相关论文
共 50 条
  • [1] SYMMETRY OF SOLUTIONS IN THE MANY-BODY PROBLEM
    LUKJANOV, LG
    ASTRONOMICHESKII ZHURNAL, 1978, 55 (06): : 1293 - 1300
  • [2] Investigation of the stability problem for the critical cases of the Newtonian many-body problem
    Grebenicov, EA
    Kozak-Skoworodkin, D
    Jakubiak, M
    COMPUTER ALGEBRA IN SCIENFIFIC COMPUTING, PROCEEDINGS, 2005, 3718 : 236 - 243
  • [3] MANY-BODY FORCES AND THE MANY-BODY PROBLEM
    POLKINGHORNE, JC
    NUCLEAR PHYSICS, 1957, 3 (01): : 94 - 96
  • [4] A NEW METHOD IN THE MANY-BODY PROBLEM
    KRASOVKSY, IV
    PERESADA, VI
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (06): : 1493 - 1505
  • [5] MANY-BODY PROBLEM
    JOHNSON, CE
    TRUMP, GW
    BALL, JT
    JOURNAL OF ACCOUNTANCY, 1967, 123 (06): : 76 - 80
  • [6] MANY-BODY PROBLEM
    KUHNELT, H
    ACTA PHYSICA AUSTRIACA, 1965, 19 (03): : 292 - &
  • [7] MANY-BODY PROBLEM
    KHALVASI, KT
    PHYSICS LETTERS A, 1972, A 41 (04) : 380 - &
  • [8] Goldfishing: A new solvable many-body problem
    Bruschi, M.
    Calogero, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)
  • [9] The nuclear many-body problem
    Blaschke, David
    Horiuchi, Hisashi
    Ring, Peter
    Roepke, Gerd
    EUROPEAN PHYSICAL JOURNAL A, 2024, 60 (09):
  • [10] LINEARIZED MANY-BODY PROBLEM
    FUKUDA, N
    SAWADA, K
    IWAMOTO, F
    PHYSICAL REVIEW, 1964, 135 (4A): : A932 - +