ON THE STRUCTURE OF THE CONFORMAL SCALAR CURVATURE EQUATION ON R(N)

被引:88
作者
CHENG, KS [1 ]
NI, WM [1 ]
机构
[1] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
关键词
D O I
10.1512/iumj.1992.41.41015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we wish to conduct a thorough study of the conformal scalar curvature equation ((1.1) below) in R(n), n greater-than-or-equal-to 3, in case the prescribed scalar curvature function K is negative. First, we establish the existence and uniqueness of the maximal positive solution. Then a complete classification of all possible positive solutions is obtained if K behaves like - Absolute value of x(-l) near infinity for some constant l > 2.
引用
收藏
页码:261 / 278
页数:18
相关论文
共 10 条
[1]  
[Anonymous], 1983, ELLIPTIC PARTIAL DIF
[2]   ON THE STRUCTURE OF THE CONFORMAL GAUSSIAN CURVATURE EQUATION ON R2 [J].
CHENG, KS ;
NI, WM .
DUKE MATHEMATICAL JOURNAL, 1991, 62 (03) :721-737
[3]  
CHENG KS, 1987, T AM MATH SOC, V304, P639
[4]   THE WIENER TEST FOR DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, E ;
JERISON, D ;
KENIG, C .
ANNALES DE L INSTITUT FOURIER, 1982, 32 (03) :151-182
[5]   ON CONFORMAL SCALAR CURVATURE EQUATIONS IN RN [J].
LI, Y ;
NI, WM .
DUKE MATHEMATICAL JOURNAL, 1988, 57 (03) :895-924
[6]  
LI Y, ASYMPTOTIC BEHAVIOR
[7]  
LIN FH, 1985, P AM MATH SOC, V95, P219, DOI DOI 10.2307/2044516.MR801327
[8]  
NAITO M, 1984, HIROSHIMA MATH J, V0014, P00211
[10]  
OSSERMAN R, 1957, PAC J MATH, V7, P1641