THE NUMBER OF CONTRACTIBLE EDGES IN A 4-CONNECTED GRAPH HAVING A SMALL NUMBER OF EDGES NOT CONTAINED IN TRIANGLES

被引:2
作者
Kotani, Keiko [1 ]
Nakamura, Shunsuke
机构
[1] Tokyo Univ Sci, Dept Math, Shinjuku Ku, Tokyo 1628601, Japan
来源
ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS | 2015年 / 15卷 / 02期
关键词
4-connected graph; contractible edge; triangle;
D O I
10.17654/AADMApr2015_153_166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a 4-connected graph, and let (E) over tilde (G) denote the set of those edges of G which are not contained in a triangle and let E-c(G) denote the set of 4-contractible edges of G. We show that if 7 <= vertical bar(E) over tilde (G)vertical bar <= 8 or vertical bar(E) over tilde (G)vertical bar >= 10, then vertical bar E-c(G)vertical bar >= (vertical bar(E) over tilde (G)vertical bar + 8)/4.
引用
收藏
页码:153 / 166
页数:14
相关论文
共 6 条
[1]   Edges not contained in triangles and the number of contractible edges in a 4-connected graph [J].
Ando, Kiyoshi ;
Egawa, Yoshimi .
DISCRETE MATHEMATICS, 2008, 308 (23) :5463-5472
[2]   Edges not contained in triangles and the distribution of contractible edges in a 4-connected graph [J].
Ando, Kiyoshi ;
Egawa, Yoshimi .
DISCRETE MATHEMATICS, 2008, 308 (16) :3449-3460
[3]  
[Anonymous], 2010, GRADUATE TEXTS MATH, V173
[4]   Fast algorithms for k-shredders and k-node connectivity augmentation [J].
Cheriyan, J ;
Thurimella, R .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1999, 33 (01) :15-50
[5]  
Jordan T, 1999, J GRAPH THEOR, V31, P195
[6]  
Kriesell M., 2002, J GRAPH THEOR, V6, P343