Analysis and simulation of thermal / viscose model for Melt Spinning process

被引:2
|
作者
Barone, Marcelo [1 ,2 ,3 ]
Barcelo, Francisco [4 ]
Useche, Jairo [5 ]
Larreteguy, Axel [4 ]
Pagnola, Marcelo [1 ]
机构
[1] Univ Buenos Aires, Fac Ingn, Inst Tecnol & Ciencia Ingn INTECIN, CONICET, Buenos Aires, DF, Argentina
[2] Univ Tecnol Nacl, Fac Reg Haedo, Dept Ingn Mecan, Buenos Aires, DF, Argentina
[3] Univ Tecnol Nacl, Fac Reg Haedo, Dept Ingn Ferroviaria, Buenos Aires, DF, Argentina
[4] Univ Argentina Empresa, Inst Tecnol INTEC, Lab Modelado & Simulac, Buenos Aires, DF, Argentina
[5] Univ Tecnol Bolivar, Dept Ingn Mecan & Mecatron, Fac Ingn, Cartagena, Colombia
来源
UIS INGENIERIAS | 2018年 / 17卷 / 01期
关键词
Melt Spinning; openFOAM (R); density based Solver; CFD; VOF;
D O I
10.18273/revuin.v17n1-2018017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Melt Spinning process is used for thin ribbons manufacture of amorphous materials and nanocrystalline. The material in liquid state is injected through a nozzle and solidifies upon contact with a copper rotating wheel. In this work, we intend to find, by means of a computer simulation with OpenFOAM (R), a thermal profile of the material from its ejection through the nozzle to the conformation of the ribbon itself. A two-phase model of the Volume of Fluids (VOF) type is used. Although neither of the two fluids (molten metal and air) can be considered compressible for working pressures, a resolution method of a compressible nature is used. This allows to represent the density changes in the air due to temperature changes, and to define a thermo-physical model for the specific alloy. For this, we considered an alloy of constant thermal conductivity, specific heat and density. The phase change is represented by a model that relates viscosity (mu) with temperature (T) in which the viscosity increases several orders of magnitude when the material passes below the crystallization temperature. Among the options of viscous models offered by OpenFOAM (R), we select a polynomial model whose coefficients were determined by OCTAVE routines until achieving a fitting curve [1] for the viscosity within the temperature range of 600 to 1700 degrees C.
引用
收藏
页码:185 / 190
页数:6
相关论文
共 50 条
  • [1] A model for the simulation of the chill block melt spinning (CBMS) process using OpenFOAM®
    Barone, Marcelo
    Barcelo, Francisco
    Pagnola, Marcelo
    Larreteguy, Axel
    Marrugo, Andres G.
    Useche, Jairo
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2020, 150
  • [2] Simulation of hollow fibers in melt-spinning process
    Zhang Chuanxiong
    Wang Chaosheng
    Wang Huaping
    PROCEEDINGS OF THE 2007 INTERNATIONAL CONFERENCE ON ADVANCED FIBERS AND POLYMER MATERIALS VOLS 1 AND 2, 2007, : 84 - 86
  • [3] Stability analysis of the melt spinning process with respect to parameters
    Goetz, Thomas
    Perera, Shyam S. N.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (11): : 874 - 880
  • [4] An Analysis of Lyocell Fiber Formation as a Melt–spinning Process
    Rui-Gang Liu
    Yi-Yi Shen
    Hui-Li Shao
    Cheng-Xun Wu
    Xue-Chao Hu
    Cellulose, 2001, 8 : 13 - 21
  • [5] Sensitivity analysis of melt spinning process by frequency response
    Jung, HW
    Lee, JS
    Hyun, JC
    KOREA-AUSTRALIA RHEOLOGY JOURNAL, 2002, 14 (02) : 57 - 62
  • [6] Numerical simulation of a two-phase melt spinning model
    Dhadwal, Renu
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (06) : 2959 - 2971
  • [7] A STUDY OF THE MELT SPINNING PROCESS
    DAVIES, HA
    VINCENT, JH
    JOURNAL OF METALS, 1980, 32 (08): : 66 - 66
  • [8] Multiscale Simulation of Polymer Melt Spinning by Using the Dumbbell Model
    Sato, Takeshi
    Takase, Kazuhiro
    Taniguchi, Takashi
    NIHON REOROJI GAKKAISHI, 2016, 44 (05) : 265 - 280
  • [9] AN IMPROVED MATHEMATICAL-MODEL OF THE MELT-SPINNING PROCESS
    DING, Z
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 210 : 302 - PMSE
  • [10] A MATHEMATICAL-MODEL OF THE PLANAR FLOW MELT SPINNING PROCESS
    GUTIERREZ, EM
    SZEKELY, J
    METALLURGICAL TRANSACTIONS B-PROCESS METALLURGY, 1986, 17 (04): : 695 - 703