Hydroxide catalysis bonding for astronomical instruments

被引:32
作者
van Veggel, Anna-Maria A. [1 ]
Killow, Christian J. [1 ]
机构
[1] Univ Glasgow, Sch Phys & Astron Scottish Univ Phys Alliance, Inst Gravitat Res, Glasgow G12 8QQ, Lanark, Scotland
基金
英国科学技术设施理事会;
关键词
gravitational wave detectors; hydroxide catalysis bonding (HCB); jointing; optical materials; telescopes;
D O I
10.1515/aot-2014-0022
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Hydroxide catalysis bonding (HCB) as a jointing technique has been under development for astronomical applications since similar to 1998 (patented by D.-H. Gwo). It uses an aqueous hydroxide solution to form a chemical bond between oxide or oxidisable materials (e.g., SiO2, sapphire, silicon and SiC). It forms strong, extremely thin bonds, and is suitable for room temperature bonding, precision alignment, operation in ultra-low vacuum and down to temperatures of 2.5 K. It has been applied in the NASA satellite mission Gravity Probe B and in the ground-based gravitational wave (GW) detector GEO600. It will soon fly again on the ESA LISA Pathfinder mission and is currently being implemented in the Advanced LIGO and Virgo ground-based GW detectors. This technique is also of considerable interest for use in other astronomical fields and indeed more broadly, due to its desirable, and adjustable, combination of properties. This paper gives an overview of how HCB has been and can be applied in astronomical instruments, including an overview of the current literature on the properties of hydroxide catalysis bonds.
引用
收藏
页码:293 / 307
页数:15
相关论文
共 77 条
[21]  
EINSTEIN A, SITZUNGSBER PREUSS A, P688
[22]   Hydroxide-catalysis bonding for stable optical systems for space [J].
Elliffe, EJ ;
Bogenstahl, J ;
Deshpande, A ;
Hough, J ;
Killow, C ;
Reid, S ;
Robertson, D ;
Rowan, S ;
Ward, H ;
Cagnoli, G .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (10) :S257-S267
[23]   Gravity Probe B: Final Results of a Space Experiment to Test General Relativity [J].
Everitt, C. W. F. ;
DeBra, D. B. ;
Parkinson, B. W. ;
Turneaure, J. P. ;
Conklin, J. W. ;
Heifetz, M. I. ;
Keiser, G. M. ;
Silbergleit, A. S. ;
Holmes, T. ;
Kolodziejczak, J. ;
Al-Meshari, M. ;
Mester, J. C. ;
Muhlfelder, B. ;
Solomonik, V. G. ;
Stahl, K. ;
Worden, P. W., Jr. ;
Bencze, W. ;
Buchman, S. ;
Clarke, B. ;
Al-Jadaan, A. ;
Al-Jibreen, H. ;
Li, J. ;
Lipa, J. A. ;
Lockhart, J. M. ;
Al-Suwaidan, B. ;
Taber, M. ;
Wang, S. .
PHYSICAL REVIEW LETTERS, 2011, 106 (22)
[24]   Precision absolute positional measurement of laser beams [J].
Fitzsimons, Ewan D. ;
Bogenstahl, Johanna ;
Hough, James ;
Killow, Christian J. ;
Perreur-Lloyd, Michael ;
Robertson, David I. ;
Ward, Henry .
APPLIED OPTICS, 2013, 52 (12) :2527-2530
[25]  
Fox R. W., 2008, P SPIE, V7099
[26]   Optical contact and van der Waals interactions: the role of the surface topography in determining the bonding strength of thick glass plates [J].
Greco, V ;
Marchesini, F ;
Molesini, G .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2001, 3 (01) :85-88
[27]   Chemical bonding for precision optical assemblies [J].
Green, Katie ;
Burke, Jan ;
Oreb, Bozenko .
OPTICAL ENGINEERING, 2011, 50 (02)
[28]   The GEO 600 status [J].
Grote, H. .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (08)
[29]   The status of GEO 600 [J].
Grote, H. .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (11)
[30]  
Gwo D.-H., 2001, U.S. patent, Patent No. [6,284,085B1, 6284085]