FUZZY INTEGRAL IN MULTICRITERIA DECISION-MAKING

被引:514
作者
GRABISCH, M
机构
[1] Thomson-CSF, Central Research Laboratory, Domaine de Corbeville
关键词
MULTICRITERIA DECISION MAKING; AGGREGATION OPERATOR; FUZZY MEASURE; FUZZY INTEGRAL; FUZZY CONNECTIVE;
D O I
10.1016/0165-0114(94)00174-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a synthesis on the use of fuzzy integral as an aggregation operator in multicriteria decision making. Definitions, essential properties are given, and compared to those of usual aggregation operators. A quick survey on applications is given.
引用
收藏
页码:279 / 298
页数:20
相关论文
共 41 条
[1]  
[Anonymous], 1970, UTILITY THEORY DECIS
[2]  
Choquet G., 1954, ANN I FOURIER GRENOB, V5, P131, DOI DOI 10.5802/AIF.53
[3]   WEIGHTED MINIMUM AND MAXIMUM OPERATIONS IN FUZZY SET-THEORY [J].
DUBOIS, D ;
PRADE, H .
INFORMATION SCIENCES, 1986, 39 (02) :205-210
[4]   A REVIEW OF FUZZY SET AGGREGATION CONNECTIVES [J].
DUBOIS, D ;
PRADE, H .
INFORMATION SCIENCES, 1985, 36 (1-2) :85-121
[5]   GENERALIZED MEANS AS MODEL OF COMPENSATIVE CONNECTIVES [J].
DYCKHOFF, H ;
PEDRYCZ, W .
FUZZY SETS AND SYSTEMS, 1984, 14 (02) :143-154
[6]  
FODOR J, IN PRESS IEEE T FUZZ
[7]  
FODOR J, IN PRESS FUZZY PREFE
[8]  
FODOR JC, 1992, 1ST FUZZ IEEE C SAN, P1261
[9]  
GRABISCH M, 1993, SECOND IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1 AND 2, P213, DOI 10.1109/FUZZY.1993.327487
[10]  
GRABISCH M, IN PRESS IEEE T FUZZ