SOLITONS, BOUNCES AND SPHALERONS ON A CIRCLE

被引:65
作者
LIANG, JQ
MULLERKIRSTEN, HJW
TCHRAKIAN, DH
机构
[1] CHINA CTR ADV SCI & TECHNOL,WORLD LAB,BEIJING,PEOPLES R CHINA
[2] SHANXI UNIV,INST THEORET PHYS,SHANXI 030006,PEOPLES R CHINA
[3] ST PATRICKS COLL,DEPT MATH PHYS,MAYNOOTH,KILDARE,IRELAND
[4] DUBLIN INST ADV STUDIES,SCH THEORET PHYS,DUBLIN 4,IRELAND
关键词
D O I
10.1016/0370-2693(92)90486-N
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A recent study of phi-4-solitons on a circle is extended to phi-4-bounces and sine-Gordon-solitons. In each case the static solutions are derived. It is then shown that the equations of small fluctuations about these solutions are Lame equations whose discrete, polynomial solutions and eigenvalues are known. Using these, the classical stability of the static solutions can be investigated. Sphalerons and bounces appear as unstable configurations.
引用
收藏
页码:105 / 110
页数:6
相关论文
共 15 条
[1]  
ARSCOTT FM, 1964, PERIODIC DIFFERENTIA, P205
[2]   BOUNCES AND THE CALCULATION OF DECAY WIDTHS [J].
BOSE, SK ;
MULLERKIRSTEN, HJW .
PHYSICS LETTERS A, 1992, 162 (01) :79-81
[3]  
Coleman S., 1979, Whys of Subnuclear Physics. Proceedings of the 1977 International School of Subnuclear Physics, P805
[4]   QUANTUM TUNNELING AND NEGATIVE EIGENVALUES [J].
COLEMAN, S .
NUCLEAR PHYSICS B, 1988, 298 (01) :178-186
[5]   ZERO-MODE CONTRIBUTION TO FREE-ENERGY OF CLASSICAL SOLUTION AT FINITE TEMPERATURE [J].
FUNAKUBO, K .
PROGRESS OF THEORETICAL PHYSICS, 1990, 83 (02) :286-304
[6]   SPHALERONS OF O(3) NONLINEAR SIGMA MODEL ON A CIRCLE [J].
FUNAKUBO, K ;
OTSUKI, S ;
TOYODA, F .
PROGRESS OF THEORETICAL PHYSICS, 1990, 83 (01) :118-133
[7]  
FUNAKUBO K, 1990, KYUSHU90HE2 KINK U R
[8]   QUANTUM MEANING OF CLASSICAL FIELD-THEORY [J].
JACKIW, R .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :681-706
[9]  
KHLEBNIKOV S, 1991, DESY91033 PREPR
[10]  
KLINKHAMER FR, 1984, PHYS REV D, V30, P2212, DOI 10.1103/PhysRevD.30.2212