NODAL PROPERTIES OF THE SCALED QUARTIC ANHARMONIC-OSCILLATOR

被引:12
作者
SHANLEY, PE
机构
关键词
D O I
10.1016/0003-4916(88)90004-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:325 / 354
页数:30
相关论文
共 41 条
[1]   CHAOS ON THE PSEUDOSPHERE [J].
BALAZS, NL ;
VOROS, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 143 (03) :109-240
[2]   ANHARMONIC OSCILLATOR [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW, 1969, 184 (05) :1231-&
[3]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091
[5]   DIABOLICAL POINTS IN THE SPECTRA OF TRIANGLES [J].
BERRY, MV ;
WILKINSON, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1984, 392 (1802) :15-43
[6]   QUANTIZING A CLASSICALLY ERGODIC SYSTEM - SINAI BILLIARD AND THE KKR METHOD [J].
BERRY, MV .
ANNALS OF PHYSICS, 1981, 131 (01) :163-216
[7]   QUANTUM EFFECTS IN A MACROSCOPIC SYSTEM [J].
CARY, JR ;
RUSU, P ;
SKODJE, RT .
PHYSICAL REVIEW LETTERS, 1987, 58 (04) :292-295
[8]   ANALYTIC STRUCTURE OF THE HENON-HEILES HAMILTONIAN IN INTEGRABLE AND NON-INTEGRABLE REGIMES [J].
CHANG, YF ;
TABOR, M ;
WEISS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (04) :531-538
[9]   THE ANALYTIC STRUCTURE OF DYNAMICAL-SYSTEMS AND SELF-SIMILAR NATURAL BOUNDARIES [J].
CHANG, YF ;
GREENE, JM ;
TABOR, M ;
WEISS, J .
PHYSICA D, 1983, 8 (1-2) :183-207
[10]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379