CONFORMAL KILLING TENSORS IN REDUCIBLE SPACES

被引:13
作者
WEIR, GJ [1 ]
机构
[1] UNIV CANTERBURY,CHRISTCHURCH,NEW ZEALAND
关键词
D O I
10.1063/1.523488
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1782 / 1787
页数:6
相关论文
共 50 条
[31]   Second order Killing tensors related to symmetric spaces [J].
Porubov, E. O. ;
Tsiganov, A. V. .
JOURNAL OF GEOMETRY AND PHYSICS, 2023, 191
[32]   Generalized Killing equations for spinning spaces and the role of Killing-Yano tensors [J].
Visinescu, M .
NUCLEAR PHYSICS B, 1997, :142-147
[33]   Quadratic Killing tensors on symmetric spaces which are not generated by Killing vector fields [J].
Matveev, Vladimir S. ;
Nikolayevsky, Yuri .
COMPTES RENDUS MATHEMATIQUE, 2024, 362
[34]   Killing-Yano tensors in spaces admitting a hypersurface orthogonal Killing vector [J].
Garfinkle, David ;
Glass, E. N. .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (03)
[35]   On Dimensions of Vector Spaces of Conformal Killing Forms [J].
Stepanov, Sergey E. ;
Jukl, Marek ;
Mikes, Josef .
ALGEBRA, GEOMETRY AND MATHEMATICAL PHYSICS (AGMP), 2014, 85 :495-507
[36]   Conformal Yano-Killing tensors for the Taub-NUT metric [J].
Jezierski, Jacek ;
Lukasik, Maciej .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (05) :1331-1340
[37]   CONFORMAL KILLING TENSORS AND VARIABLE SEPARATION FOR HAMILTON-JACOBI EQUATIONS [J].
KALNINS, EG ;
MILLER, W .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1983, 14 (01) :126-137
[38]   Dirac symmetry operators from conformal Killing-Yano tensors [J].
Benn, IM ;
Charlton, P .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (05) :1037-1042
[39]   STRUCTURAL EQUATIONS FOR A SPECIAL CLASS OF CONFORMAL KILLING TENSORS OF ARBITRARY VALENCE [J].
Crampin, M. .
REPORTS ON MATHEMATICAL PHYSICS, 2008, 62 (02) :241-254
[40]   CONFORMAL AREAL SPACES OF SUBMETRIC CLASS - TRANSFORMATION OF CURVATURE TENSORS [J].
SINGH, OP .
MATHEMATISCHE NACHRICHTEN, 1973, 58 (1-6) :145-159