CONFORMAL KILLING TENSORS IN REDUCIBLE SPACES

被引:13
作者
WEIR, GJ [1 ]
机构
[1] UNIV CANTERBURY,CHRISTCHURCH,NEW ZEALAND
关键词
D O I
10.1063/1.523488
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1782 / 1787
页数:6
相关论文
共 50 条
[22]   Nonlinear symmetries on spaces admitting Killing tensors [J].
Visinescu, Mihai .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (04) :823-834
[23]   Hidden symmetries and killing tensors on curved spaces [J].
S. Ianuş ;
M. Visinescu ;
G. E. Vîlcu .
Physics of Atomic Nuclei, 2010, 73 :1925-1930
[24]   Hidden symmetries and killing tensors on curved spaces [J].
Ianus, S. ;
Visinescu, M. ;
Vilcu, G. E. .
PHYSICS OF ATOMIC NUCLEI, 2010, 73 (11) :1925-1930
[25]   Null conformal Killing-Yano tensors and Birkhoff theorem [J].
Josep Ferrando, Joan ;
Antonio Saez, Juan .
GENERAL RELATIVITY AND GRAVITATION, 2016, 48 (04)
[26]   Geometry, conformal Killing-Yano tensors and conserved “currents” [J].
Ulf Lindström ;
Özgür Sarıoğlu .
Journal of High Energy Physics, 2023
[27]   Some remarks on (super)-conformal Killing-Yano tensors [J].
Howe, P. S. ;
Lindstrom, U. .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11)
[28]   Geometry, conformal Killing-Yano tensors and conserved "currents" [J].
Lindstrom, Ulf ;
Sarioglu, Ozgur .
JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (05)
[29]   Some remarks on (super)-conformal Killing-Yano tensors [J].
P. S. Howe ;
U. Lindström .
Journal of High Energy Physics, 2018
[30]   On the theory of algebraic invariants of vector spaces of Killing tensors [J].
Horwood, Joshua T. .
JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (04) :487-501