AUTOMATIC DECREASE OF THE PENALTY PARAMETER IN EXACT PENALTY-FUNCTION METHODS

被引:30
|
作者
MONGEAU, M
SARTENAER, A
机构
[1] FAC UNIV NOTRE DAME PAIX,DEPT MATH,B-5000 NAMUR,BELGIUM
[2] UNIV EDINBURGH,DEPT MATH & STAT,EDINBURGH EH9 3JZ,MIDLOTHIAN,SCOTLAND
关键词
EXACT PENALTY METHOD; PENALTY PARAMETER; LINEAR PROGRAMMING; ACTIVE-SET APPROACH;
D O I
10.1016/0377-2217(93)E0339-Y
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents an analysis of the involvement of the penalty parameter in exact penalty function methods that yields modifications to the standard outer loop which decreases the penalty parameter (typically dividing it by a constant). The procedure presented is based on the simple idea of making explicit the dependence of the penalty function upon the penalty parameter and is illustrated on a linear programming problem with the l1 exact penalty function and an active-set approach. The procedure decreases the penalty parameter, when needed, to the maximal value allowing the inner minimization algorithm to leave the current iterate. It moreover avoids unnecessary calculations in the iteration following the step in which the penalty parameter is decreased. We report on preliminary computational results which show that this method can require fewer iterations than the standard way to update the penalty parameter. This approach permits a better understanding of the performance of exact penalty methods.
引用
收藏
页码:686 / 699
页数:14
相关论文
共 50 条
  • [41] A Weighted Method for Fast Resolution of Strictly Hierarchical Robot Task Specifications Using Exact Penalty Functions
    Sathya, Ajay Suresha
    Pipeleers, Goele
    Decre, Wilm
    Swevers, Jan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 3057 - 3064
  • [42] A Smoothing Penalty Function Algorithm for Two-Cardinality Sparse Constrained Optimization Problems
    Min, Jiang
    Meng, Zhiqing
    Zhou, Gengui
    Shen, Rui
    2018 14TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2018, : 45 - 49
  • [43] THRESHOLD VALUE OF THE PENALTY PARAMETER IN THE MINIMIZATION OF L1-PENALIZED CONDITIONAL VALUE-AT-RISK
    Gaitsgory, Vladimir
    Tarnopolskaya, Tanya
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2013, 9 (01) : 191 - 204
  • [44] A penalty function method based on Kuhn-Tucker condition for solving linear bilevel programming
    Lv, Yibing
    Hu, Tiesong
    Wang, Guangmin
    Wan, Zhongping
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) : 808 - 813
  • [45] Combination of linear and weighted goal programming with penalty function in optimisation of a daily dairy cow ration
    Zgajnar, J.
    Juvancic, L.
    Kavcic, S.
    AGRICULTURAL ECONOMICS-ZEMEDELSKA EKONOMIKA, 2009, 55 (10): : 492 - 500
  • [46] SUPERLINEARLY CONVERGENT EXACT PENALTY PROJECTED STRUCTURED HESSIAN UPDATING SCHEMES FOR CONSTRAINED NONLINEAR LEAST SQUARES: ASYMPTOTIC ANALYSIS
    Mahdavi-Amiri, N.
    Ansari, M. R.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (03) : 767 - 786
  • [47] On the smoothing of the norm objective penalty function for two-cardinality sparse constrained optimization problems
    Min, Jiang
    Meng, Zhiqing
    Zhou, Gengui
    Shen, Rui
    NEUROCOMPUTING, 2021, 458 : 559 - 565
  • [48] Fast Converging ADMM Penalized Decoding Method Based on Improved Penalty Function for LDPC Codes
    Wang, Biao
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2020, E103A (11) : 1304 - 1307
  • [49] A robust combined trust region-line search exact penalty projected structured scheme for constrained nonlinear least squares
    Ansari, Mohammad Reza
    Mahdavi-Amiri, Nezam
    OPTIMIZATION METHODS & SOFTWARE, 2015, 30 (01): : 162 - 190
  • [50] EFFICIENT P-VERSION FEM SOLUTION FOR TEHD PROBLEMS WITH NEW PENALTY-PARAMETER BASED CAVITATION MODEL
    Szavai, Sz.
    BALTTRIB' 2009: V INTERNATIONAL CONFERENCE, PROCEEDINGS, 2009, : 194 - 199