AUTOMATIC DECREASE OF THE PENALTY PARAMETER IN EXACT PENALTY-FUNCTION METHODS

被引:30
|
作者
MONGEAU, M
SARTENAER, A
机构
[1] FAC UNIV NOTRE DAME PAIX,DEPT MATH,B-5000 NAMUR,BELGIUM
[2] UNIV EDINBURGH,DEPT MATH & STAT,EDINBURGH EH9 3JZ,MIDLOTHIAN,SCOTLAND
关键词
EXACT PENALTY METHOD; PENALTY PARAMETER; LINEAR PROGRAMMING; ACTIVE-SET APPROACH;
D O I
10.1016/0377-2217(93)E0339-Y
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents an analysis of the involvement of the penalty parameter in exact penalty function methods that yields modifications to the standard outer loop which decreases the penalty parameter (typically dividing it by a constant). The procedure presented is based on the simple idea of making explicit the dependence of the penalty function upon the penalty parameter and is illustrated on a linear programming problem with the l1 exact penalty function and an active-set approach. The procedure decreases the penalty parameter, when needed, to the maximal value allowing the inner minimization algorithm to leave the current iterate. It moreover avoids unnecessary calculations in the iteration following the step in which the penalty parameter is decreased. We report on preliminary computational results which show that this method can require fewer iterations than the standard way to update the penalty parameter. This approach permits a better understanding of the performance of exact penalty methods.
引用
收藏
页码:686 / 699
页数:14
相关论文
共 50 条
  • [1] Exact penalty functions with multidimensional penalty parameter and adaptive penalty updates
    Dolgopolik, M. V.
    OPTIMIZATION LETTERS, 2022, 16 (04) : 1281 - 1300
  • [2] Exact penalty functions with multidimensional penalty parameter and adaptive penalty updates
    M. V. Dolgopolik
    Optimization Letters, 2022, 16 : 1281 - 1300
  • [3] An explicit expression for the penalty parameter of the interior penalty method
    Shahbazi, K
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 205 (02) : 401 - 407
  • [4] Adaptive Exact Penalty Design for Constrained Distributed Optimization
    Zhou, Hongbing
    Zeng, Xianlin
    Hong, Yiguang
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (11) : 4661 - 4667
  • [5] Portfolio reshaping under 1st-order stochastic dominance constraints by the exact penalty function methods
    Norkin, Vladimir
    Pichler, Alois
    OPTIMIZATION, 2024,
  • [6] Solving propeller optimization problems by using helical vortex and exact penalty methods
    Danilo Azevedo
    Joel L. C. Reis
    Ricardo L. U. de F. Pinto
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45
  • [7] Solving propeller optimization problems by using helical vortex and exact penalty methods
    Azevedo, Danilo
    Reis, Joel L. C.
    Pinto, Ricardo L. U. de F.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2023, 45 (07)
  • [8] An Exact Penalty Method for Constrained Distributed Optimization
    Zhou, Hongbing
    Zeng, Xianlin
    Hong, Yiguang
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 8827 - 8832
  • [9] General Exact Penalty Functions in Integer Programming
    白富生
    张连生
    吴至友
    Journal of Shanghai University, 2004, (01) : 19 - 23
  • [10] Postponing the Choice of Penalty Parameter and Step Length
    Fernando R. Villas-Bôas
    Clovis Perin
    Computational Optimization and Applications, 2003, 24 : 63 - 81