AN ELEMENTARY GEOMETRIC CHARACTERIZATION OF THE INTEGRABLE MOTIONS OF A CURVE

被引:118
作者
DOLIWA, A
SANTINI, PM
机构
[1] UNIV ROMA LA SAPIENZA, DIPARTIMENTO FIS, I-00185 ROME, ITALY
[2] INFN, SEZIONE ROMA, I-00185 ROME, ITALY
关键词
D O I
10.1016/0375-9601(94)90170-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the following elementary geometric properties of the motion of a curve select hierarchies of integrable dynamics: (i) the curve moves in an N-dimensional sphere of radius R; (ii) the motion is nonstretching; (iii) the dynamics does not depend explicitly on the radius of the sphere. For N = 2 we obtain the modified Korteweg-de Vries hierarchy, for N = 3 the nonlinear Schrodinger hierarchy and for N > 3 we obtain integrable multicomponent generalizations of the above hierarchies.
引用
收藏
页码:373 / 384
页数:12
相关论文
共 48 条