AN ELEMENTARY GEOMETRIC CHARACTERIZATION OF THE INTEGRABLE MOTIONS OF A CURVE

被引:119
作者
DOLIWA, A
SANTINI, PM
机构
[1] UNIV ROMA LA SAPIENZA, DIPARTIMENTO FIS, I-00185 ROME, ITALY
[2] INFN, SEZIONE ROMA, I-00185 ROME, ITALY
关键词
D O I
10.1016/0375-9601(94)90170-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the following elementary geometric properties of the motion of a curve select hierarchies of integrable dynamics: (i) the curve moves in an N-dimensional sphere of radius R; (ii) the motion is nonstretching; (iii) the dynamics does not depend explicitly on the radius of the sphere. For N = 2 we obtain the modified Korteweg-de Vries hierarchy, for N = 3 the nonlinear Schrodinger hierarchy and for N > 3 we obtain integrable multicomponent generalizations of the above hierarchies.
引用
收藏
页码:373 / 384
页数:12
相关论文
共 48 条
[1]  
ABLOWITZ MJ, 1986, STUD APPL MATH, V74, P177
[2]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[3]  
ABLOWITZ MJ, 1981, STUDIES APPLIED MATH, V4
[4]  
BACKLUND AV, 1905, CONCERNING SURFACES
[5]   GEOMETRIC PHASE IN THE CLASSICAL CONTINUOUS ANTIFERROMAGNETIC HEISENBERG SPIN CHAIN [J].
BALAKRISHNAN, R ;
BISHOP, AR ;
DANDOLOFF, R .
PHYSICAL REVIEW LETTERS, 1990, 64 (18) :2107-2110
[6]  
BALAKRISHNAN R, IMSC9305 PREPR
[7]   GENERAL-SOLUTIONS OF NON-LINEAR EQUATIONS IN THE GEOMETRIC-THEORY OF THE RELATIVISTIC STRING [J].
BARBASHOV, BM ;
NESTERENKO, VV ;
CHERVYAKOV, AM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 84 (04) :471-481
[8]  
BIANCHI L, 1953, OPERE 2, V1, P137
[9]  
BIANCHI L, 1892, LEZIONI GEOMETRIA DI, V1
[10]   ALL CONSTANT MEAN-CURVATURE TORI IN R3,S-3,H-3 IN TERMS OF THETA-FUNCTIONS [J].
BOBENKO, AI .
MATHEMATISCHE ANNALEN, 1991, 290 (02) :209-245