A Comparison of Data-Driven and Model-Driven Approaches to Brightness Temperature Diurnal Cycle Interpolation

被引:0
|
作者
van den Bergh, F. [1 ]
van Wyk, M. A.
van Wyk, B. J.
Udahemuka, G. [2 ]
机构
[1] CSIR, Ong Meraka Inst, Remote Sesaing Res Unit, Pretoria, South Africa
[2] Tskivane Univ Technol, FSATIE, Pretoria, South Africa
来源
SAIEE AFRICA RESEARCH JOURNAL | 2007年 / 98卷 / 03期
关键词
Dlurnal Temperature Cycle; Reproducing Kernel Hibert Space interpolator;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents two new schemes for interpolating missing samples in satellite diurnal temperature cycles. The first scheme, referred to here as the cosine model, is an improvement model proposed by G? ttsche et al and combines a cosine and exponential function for modelling the diurnal temperature cycle. The second scheme employs a Reproducing Kernal Hilbert Space interpolator for interpolating the missing samples. The application of reproducing kernel Hilbert space interpolators to the diurnal temperature cycle interpolation problem is novel. Results obtained by means of computer experiments are presented.
引用
收藏
页码:81 / 86
页数:6
相关论文
共 50 条
  • [41] Spatial-Temporal Dynamic Frequency Prediction Based on Integrating Model-Driven and Data-Driven
    Sun, Xieli
    Chen, Longyu
    Wang, Xiaoru
    2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [42] Combined Data-Driven and Model-Driven Location of Lightning Strikes: Application to Meshed HVDC Grids
    Verrax, Paul
    Kieffer, Michel
    Milhiet, Louis
    Raison, Bertrand
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (02) : 3811 - 3824
  • [43] Hybrid model-driven and data-driven method for predicting concrete creep considering uncertainty quantification
    Yang, Yiming
    Zhou, Chengkun
    Peng, Jianxin
    Cai, Chunsheng
    Tang, Huang
    Zhang, Jianren
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2024, 18 (10): : 1524 - 1539
  • [44] Learning Disentangled Priors for Hyperspectral Anomaly Detection: A Coupling Model-Driven and Data-Driven Paradigm
    Li, Chenyu
    Zhang, Bing
    Hong, Danfeng
    Jia, Xiuping
    Plaza, Antonio
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 14
  • [45] Data-driven and Model-driven Deep Learning Detection for RIS-aided Spatial Modulation
    Liu, Jiang
    Di Renzo, Marco
    2021 IEEE 4TH 5G WORLD FORUM (5GWF 2021), 2021, : 88 - 92
  • [46] On the coupling of data-driven computing and model-driven computing with CUF-based beam models
    Hui, Yanchuan
    Giunta, Gaetano
    Liu, Xiao
    Zheng, Jie
    Yang, Jie
    Huang, Wei
    Carrera, Erasmo
    THIN-WALLED STRUCTURES, 2024, 195
  • [47] Kinetic modelling of [11C]flumazenil using model-driven and data-driven methods
    Stangier, Isabelle
    Liedtke, C.
    Ziegler, S. I.
    Spilker, M. E.
    Boecker, H.
    NEUROIMAGE, 2006, 31 : T97 - T97
  • [48] Tunnel Reconstruction With Block Level Precision by Combining Data-Driven Segmentation and Model-Driven Assembly
    Cao, Zhen
    Chen, Dong
    Peethambaran, Jiju
    Zhang, Zhenxin
    Xia, Shaobo
    Zhang, Liqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (10): : 8853 - 8872
  • [49] Hybrid Model-driven and Data-driven Approach to Price Forecasting in Bilateral Contract Electricity Markets
    Li Y.
    Han X.
    Yu X.
    Cheng C.
    Liu B.
    Cai H.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2022, 46 (18): : 179 - 189
  • [50] Integrating model-driven and data-driven methods for under-frequency load shedding control
    Li, Binghui
    Wang, Huaiyuan
    Li, Jian
    Lu, Guoqiang
    ELECTRIC POWER SYSTEMS RESEARCH, 2025, 238