AN APPROXIMATE METHOD OF SHALLOW SHELLS WITH VARIABLE THICKNESS

被引:1
|
作者
MATSUDA, H
MORITA, C
SAKIYAMA, T
机构
[1] Department of Structural Engineering, University of Nagasaki, Nagasaki
关键词
D O I
10.1016/0045-7949(92)90109-D
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An approximate method is developed to study the static bending of shallow shells with variable thickness. The solutions are obtained by transforming the partial differential equations into the integral equations and applying the numerical integrations. Some numerical examples are shown together with other solutions, and as an application of this method, the results of shallow shell with variable thickness are shown.
引用
收藏
页码:989 / 996
页数:8
相关论文
共 50 条
  • [21] Large amplitude free vibration of orthotropic shallow shells of complex shapes with variable thickness
    Awrejcewicz, Jan
    Kurpa, Lidiya
    Shmatko, Tatiyana
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2013, 10 (01): : 149 - 162
  • [22] Large amplitude free vibration of orthotropic shallow shells of complex shapes with variable thickness
    Awrejcewicz, Jan
    Kurpa, Lidiya
    Shmatko, Tatiyana
    Latin American Journal of Solids and Structures, 2013, 10 (01) : 147 - 160
  • [23] TRANSFER MATRIX METHOD FOR ORTHOTRONIC CYLINDRICAL SHELLS WITH VARIABLE WALL THICKNESS
    Vrabie, Mihai
    Ungureanu, Nicolac
    Daconu-Sotropa, Dan
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2010, 11 (02): : 171 - 178
  • [24] NONLINEAR FREE VIBRATIONS ANALYSIS AND BEHEVIOR OF THIN SHALLOW SPHERICAL ELASTIC SHELLS OF VARIABLE THICKNESS
    Mandal, Utpal Kumar
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2009, 4 (01): : 382 - 402
  • [25] CYLINDRICAL SHELLS OF VARIABLE WALL THICKNESS
    LARDNER, TJ
    AIAA JOURNAL, 1969, 7 (01) : 191 - &
  • [26] Vibrations of Complex Shells with Variable Thickness
    Kang, Jae-Hoon
    JOURNAL OF ENGINEERING MECHANICS, 2017, 143 (08)
  • [27] Medial Representations for Shells of Variable Thickness
    Szwabowicz, Marek L.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 394 - 397
  • [28] Towards a theory of shells of variable thickness
    Szwabowicz, Marek L.
    SHELL STRUCTURES: THEORY AND APPLICATIONS, VOL 2, 2010, : 99 - 102
  • [29] VIBRATIONS OF CONICAL SHELLS WITH VARIABLE THICKNESS
    TAKAHASHI, S
    SUZUKI, K
    ANZAI, E
    KOSAWADA, T
    BULLETIN OF THE JSME-JAPAN SOCIETY OF MECHANICAL ENGINEERS, 1982, 25 (207): : 1435 - 1442
  • [30] Approximate fundamental solutions of shallow shells equilibrium equations
    Myslecki, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S877 - S878