THE STRUCTURE OF REVERSIBLE ONE-DIMENSIONAL CELLULAR AUTOMATA

被引:7
|
作者
HILLMAN, D
机构
[1] Department of History and Philosophy of Science, University of Pittsburgh, Pittsburgh, PA 15260
来源
PHYSICA D | 1991年 / 52卷 / 2-3期
关键词
D O I
10.1016/0167-2789(91)90128-V
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algorithm is presented for determining reversibility characteristics of 1-dimensional cellular automaton laws. The concept of local reversibility is defined. Each locally reversible automaton is shown to be isomorphic to a member of the class of "center-reversible" automata. Algorithms are described for generating the set of center-reversible laws and the set of center-reversible additive laws.
引用
收藏
页码:277 / 292
页数:16
相关论文
共 50 条
  • [31] One-dimensional pattern generation by cellular automata
    Kutrib, Martin
    Malcher, Andreas
    NATURAL COMPUTING, 2022, 21 (03) : 361 - 375
  • [32] Partial Reversibility of One-Dimensional Cellular Automata
    Correa, Ronaldo de Castro
    de Oliveira, Pedro P. B.
    CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, AUTOMATA 2016, 2016, 9664 : 120 - 134
  • [33] SOLITON TURBULENCE IN ONE-DIMENSIONAL CELLULAR AUTOMATA
    AIZAWA, Y
    NISHIKAWA, I
    KANEKO, K
    PHYSICA D, 1990, 45 (1-3): : 307 - 327
  • [34] On the Parity Problem in One-Dimensional Cellular Automata
    Betel, Heather
    de Oliveira, Pedro P. B.
    Flocchini, Paola
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (90): : 110 - 126
  • [35] Calculating ancestors in one-dimensional cellular automata
    Mora, JCST
    Martínez, GJ
    Mcintosh, HV
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2004, 15 (08): : 1151 - 1169
  • [36] Derivation and Representation of One-Dimensional, Reversible, Number-Conserving Cellular Automata Rules
    Schranko, Angelo
    de Oliveira, Pedro P. B.
    JOURNAL OF CELLULAR AUTOMATA, 2011, 6 (01) : 77 - 89
  • [37] Transductions Computed by One-Dimensional Cellular Automata
    Kutrib, Martin
    Malcher, Andreas
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (90): : 194 - 207
  • [38] One-dimensional pattern generation by cellular automata
    Martin Kutrib
    Andreas Malcher
    Natural Computing, 2022, 21 : 361 - 375
  • [39] Mixing properties of one-dimensional cellular automata
    Kleveland, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (06) : 1755 - 1766
  • [40] Local information in one-dimensional cellular automata
    Helvik, T
    Lindgren, K
    Nordahl, MG
    CELLULAR AUTOMATA, PROCEEDINGS, 2004, 3305 : 121 - 130