RANDOM POLYTOPES IN SMOOTH CONVEX-BODIES

被引:49
作者
BARANY, I
机构
[1] The Mathematical Institute of the Hungarian Academy of Sciences
关键词
D O I
10.1112/S0025579300006872
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K subset-of R(d) be a convex body and choose points x1, x2,..., x(n) randomly, independently, and uniformly from K. Then K(n) = conv {x1,..., x(n)} is a random polytope that approximates K (as n --> infinity) with high probability. Answering a question of Rolf Schneider we determine, up to first order precision, the expectation of vol K - vol K(n) when K is a smooth convex body. Moreover, this result is extended to quermassintegrals (instead of volume).
引用
收藏
页码:81 / 92
页数:12
相关论文
共 14 条
[11]   RANDOM POLYTOPES IN A CONVEX BODY [J].
SCHNEIDER, R ;
WIEACKER, JA .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 52 (01) :69-73
[12]   RANDOM APPROXIMATION OF CONVEX-SETS [J].
SCHNEIDER, R .
JOURNAL OF MICROSCOPY, 1988, 151 :211-227
[14]  
WIEACKER JA, 1978, THESIS FREIBURG