RANDOM POLYTOPES IN SMOOTH CONVEX-BODIES

被引:49
作者
BARANY, I
机构
[1] The Mathematical Institute of the Hungarian Academy of Sciences
关键词
D O I
10.1112/S0025579300006872
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K subset-of R(d) be a convex body and choose points x1, x2,..., x(n) randomly, independently, and uniformly from K. Then K(n) = conv {x1,..., x(n)} is a random polytope that approximates K (as n --> infinity) with high probability. Answering a question of Rolf Schneider we determine, up to first order precision, the expectation of vol K - vol K(n) when K is a smooth convex body. Moreover, this result is extended to quermassintegrals (instead of volume).
引用
收藏
页码:81 / 92
页数:12
相关论文
共 14 条
[1]  
AFFENTRANGER F, IN PRESS REND SEM MA
[2]  
AFFENTRANGER F, 1991, DISCRETE COMP GEOMET, V6, P191
[3]   INTRINSIC VOLUMES AND F-VECTORS OF RANDOM POLYTOPES [J].
BARANY, I .
MATHEMATISCHE ANNALEN, 1989, 285 (04) :671-699
[4]   CONVEX-BODIES, ECONOMIC CAP COVERINGS, RANDOM POLYTOPES [J].
BARANY, I ;
LARMAN, DG .
MATHEMATIKA, 1988, 35 (70) :274-291
[5]  
BARANY I, 1990, AUZ OSTER AKAD WISS, V77, P25
[6]  
Bonnesen T., 1934, THEORIE KONVEXEN KOR
[7]  
EFRON B, 1965, BIOMETRIKA, V52, P331, DOI 10.2307/2333687
[8]  
Renyi A., 1964, Z WAHRSCHEIN, V3, P138, DOI DOI 10.1007/BF00535973
[9]  
Renyi A., 1963, Z WAHRSCHEINLICHKEIT, V2, P75, DOI DOI 10.1007/BF00535300
[10]  
Santalo L. A., 2004, INTEGRAL GEOMETRY GE