HARMONIC-ANALYSIS OF SPHERICAL-FUNCTIONS ON SU(1,1)

被引:21
作者
BENYAMINI, Y
WEIT, Y
机构
[1] TECHNION ISRAEL INST TECHNOL,DEPT MATH,IL-32000 HAIFA,ISRAEL
[2] HAIFA UNIV,DEPT MATH,IL-31999 HAIFA,ISRAEL
关键词
SPHERICAL FUNCTIONS; SU(1,1); SPECTRAL SYNTHESIS; IDEALS; WIENER THEOREM; 2 CIRCLES THEOREMS;
D O I
10.5802/aif.1305
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by L1(K\G/K) the algebra of spherical integrable functions on SU(1,1), with convolution as multiplication. This is a commutative semi-simple algebra, and we use its Gelfand transform to study the ideals in L1(K\G/K). In particular, we are interested in conditions on an ideal that ensure that it is all of L1(K\G/K), or that it is L0(1)(K\G\K). Spherical functions on SU(1,1) are naturally represented as radial functions on the unit disk D in the complex plane. Using this representation, these results are applied to characterize harmonic and holomorphic functions on D.
引用
收藏
页码:671 / 694
页数:24
相关论文
共 20 条
[1]  
AGRANOVSKII MG, 1981, MATH J, V22, P171
[2]   AN OVERDETERMINED NEUMANN PROBLEM IN THE UNIT DISK [J].
BERENSTEIN, CA ;
YANG, P .
ADVANCES IN MATHEMATICS, 1982, 44 (01) :1-17
[3]   POMPEIUS PROBLEM ON SPACES OF CONSTANT CURVATURE [J].
BERENSTEIN, CA ;
ZALCMAN, L .
JOURNAL D ANALYSE MATHEMATIQUE, 1976, 30 :113-130
[4]  
CHOQUET G, 1960, CR HEBD ACAD SCI, V250, P779
[5]   SOME PROPERTIES OF THE FOURIER TRANSFORM ON SEMI-SIMPLE LIE GROUPS .1. [J].
EHRENPREIS, L ;
MAUTNER, FI .
ANNALS OF MATHEMATICS, 1955, 61 (03) :406-439
[6]  
Ehrenpreis L., 1959, T AM MATH SOC, V90, P431, DOI 10.2307/1993181
[7]   ITERATES OF CONVOLUTIONS [J].
FOGUEL, SR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 47 (02) :368-370
[8]   CONVEX POWER-SERIES OF A CONSERVATIVE MARKOV OPERATOR [J].
FOGUEL, SR ;
WEISS, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 38 (02) :325-330
[9]   A POISSON FORMULA FOR SEMI-SIMPLE LIE GROUPS [J].
FURSTENBERG, H .
ANNALS OF MATHEMATICS, 1963, 77 (02) :335-&
[10]  
FURSTENBERG H, 1972, SYMMETRIC SPACES, P359