On n-Weak Cotorsion Modules

被引:2
作者
Selvaraj, C. [1 ]
Prabakaran, P. [1 ]
机构
[1] Periyar Univ, Dept Math, Salem 636011, Tamil Nadu, India
关键词
weak injective module; weak flat module; n-weak cotorsion module; super finitely presented dimension;
D O I
10.1134/S1995080218090305
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring and n a fixed non-negative integer. In this paper, n-weak cotorsion modules are introduced and studied. A right R-module N is called n-weak cotorsion module if ExtR1(F,N)=0 for any right R-module F with weak flat dimension at most n. Also some characterizations of rings with finite super finitely presented dimensions are given.
引用
收藏
页码:1428 / 1436
页数:9
相关论文
共 17 条
[1]  
Anderson F. W., 1992, GRADUATE TEXTS MATH, V13
[2]   PARAMETERIZING FAMILIES OF NON-NOETHERIAN RINGS [J].
COSTA, DL .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (10) :3997-4011
[3]   On envelopes with the unique mapping property [J].
Ding, NQ .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (04) :1459-1470
[4]  
Enochs E.E., 2000, GRUYTER EXP MATH, V30
[5]   The existence of Gorenstein flat covers [J].
Enochs, EE ;
Jenda, OMG ;
Lopez-Ramos, JA .
MATHEMATICA SCANDINAVICA, 2004, 94 (01) :46-62
[6]   INJECTIVE AND FLAT COVERS, ENVELOPES AND RESOLVENTS [J].
ENOCHS, EE .
ISRAEL JOURNAL OF MATHEMATICS, 1981, 39 (03) :189-209
[7]   WEAK INJECTIVE COVERS AND DIMENSION OF MODULES [J].
Gao, Z. ;
Huang, Z. .
ACTA MATHEMATICA HUNGARICA, 2015, 147 (01) :135-157
[8]   Weak Injective and Weak Flat Modules [J].
Gao, Zenghui ;
Wang, Fanggui .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (09) :3857-3868
[9]   ALL GORENSTEIN HEREDITARY RINGS ARE COHERENT [J].
Gao, Zenghui ;
Wang, Fanggui .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (04)
[10]   ON n-FI-INJECTIVE AND n-FI- FLAT MODULES [J].
Gao, Zenghui .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (08) :2757-2770