Quantum computation of discrete logarithms in semigroups

被引:19
作者
Childs, Andrew M. [1 ,2 ]
Ivanyos, Gabor [3 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Hungarian Acad Sci, Inst Comp Sci & Control, H-1111 Budapest, Hungary
基金
加拿大自然科学与工程研究理事会;
关键词
Quantum algorithms; discrete logarithm; semigroups; hidden shift problem; constructive membership; semigroup actions;
D O I
10.1515/jmc-2013-0038
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe an efficient quantum algorithm for computing discrete logarithms in semigroups using Shor's algorithms for period finding and the discrete logarithm problem as subroutines. Thus proposed cryptosystems based on the presumed hardness of discrete logarithms in semigroups are insecure against quantum attacks. In contrast, we show that some generalizations of the discrete logarithm problem are hard in semigroups despite being easy in groups. We relate a shifted version of the discrete logarithm problem in semigroups to the dihedral hidden subgroup problem, and we show that the constructive membership problem with respect to k >= 2 generators in a black-box abelian semigroup of order N requires (Theta) over tilde (N1/2-1/2K) quantum queries.
引用
收藏
页码:405 / 416
页数:12
相关论文
共 18 条
  • [1] Quantum lower bounds by quantum arguments
    Ambainis, A
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2002, 64 (04) : 750 - 767
  • [2] Babai L., 1984, 25th Annual Symposium on Foundations of Computer Science (Cat. No. 84CH2085-9), P229, DOI 10.1109/SFCS.1984.715919
  • [3] Banin M., 2013, REDUCTION SEMIGROUP
  • [4] MEMBERSHIP TESTING IN COMMUTATIVE TRANSFORMATION SEMIGROUPS
    BEAUDRY, M
    [J]. INFORMATION AND COMPUTATION, 1988, 79 (01) : 84 - 93
  • [5] On quantum algorithms for noncommutative hidden subgroups
    Ettinger, M
    Hoyer, P
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2000, 25 (03) : 239 - 251
  • [6] HIDDEN TRANSLATION AND TRANSLATING COSET IN QUANTUM COMPUTING
    Friedl, Katalin
    Ivanyos, Gabor
    Magniez, Frederic
    Santha, Miklos
    Sen, Pranab
    [J]. SIAM JOURNAL ON COMPUTING, 2014, 43 (01) : 1 - 24
  • [7] Quantum mechanics helps in searching for a needle in a haystack
    Grover, LK
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (02) : 325 - 328
  • [8] HOWIE JM, 1995, LONDON MATH SOC MONO, V12
  • [9] Ivanyos G., 2003, International Journal of Foundations of Computer Science, V14, P723, DOI 10.1142/S0129054103001996
  • [10] Public key exchange using matrices over group rings
    Kahrobaei, Delaram
    Koupparis, Charalambos
    Shpilrain, Vladimir
    [J]. GROUPS COMPLEXITY CRYPTOLOGY, 2013, 5 (01) : 97 - 115