Numerical Conformal Mappings onto the Canonical Slit Domains

被引:0
|
作者
Amano, Kaname [1 ]
Okano, Dai [1 ]
机构
[1] Ehime Univ, Grad Sch Sci & Engn, Matsuyama, Ehime, Japan
基金
日本学术振兴会;
关键词
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Conformal mappings are familiar in science and engineering. Recently, the problem of multiply connected domains has attracted special interest. We here present a unified scheme for numerical conformal mappings of unbounded multiply connected domains onto the parallel, circular and radial slit domains under two different conditions. These are canonical slit domains important in potential flow problems. We express the mapping functions in terms of an analytic function so that its real part is subject to a Dirichlet boundary condition, and have approximate mapping functions of simple form and high accuracy using the charge simulation method. Numerical examples show the effectiveness of our method. We also make a short survey of relevant works.
引用
收藏
页码:317 / 332
页数:16
相关论文
共 50 条
  • [1] Numerical Conformal Mappings on Rectangular Domains with a Slit
    Okano, Dai
    Endo, Keiiehi
    Amano, Kaname
    THEORETICAL AND APPLIED MECHANICS JAPAN, 2012, 60 : 333 - 341
  • [2] Numerical conformal mappings on rectangular domains with a slit
    Okano, Dai
    Endo, Keiichi
    Amano, Kaname
    Theoretical and Applied Mechanics Japan, 2012, 60 : 333 - 341
  • [3] Numerical conformal mappings onto the linear slit domain
    Kaname Amano
    Dai Okano
    Hidenori Ogata
    Masaaki Sugihara
    Japan Journal of Industrial and Applied Mathematics, 2012, 29 : 165 - 186
  • [4] Numerical conformal mappings onto the linear slit domain
    Amano, Kaname
    Okano, Dai
    Ogata, Hidenori
    Sugihara, Masaaki
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2012, 29 (02) : 165 - 186
  • [5] Computing Conformal Maps of Finitely Connected Domains onto Canonical Slit Domains
    Andreev, Valentin V.
    McNicholl, Timothy H.
    THEORY OF COMPUTING SYSTEMS, 2012, 50 (02) : 354 - 369
  • [6] Computing Conformal Maps of Finitely Connected Domains onto Canonical Slit Domains
    Valentin V. Andreev
    Timothy H. McNicholl
    Theory of Computing Systems, 2012, 50 : 354 - 369
  • [7] Numerical Conformal Mapping onto the Parabolic, Elliptic and Hyperbolic Slit Domains
    Nasser, Mohamed M. S.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) : 2067 - 2087
  • [8] Numerical Conformal Mapping onto the Parabolic, Elliptic and Hyperbolic Slit Domains
    Mohamed M. S. Nasser
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 2067 - 2087
  • [9] Conformal mappings of multiply connected domains onto canonical domains using the Green and Neumann functions
    Bourchtein, Ludmila
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (06) : 821 - 836
  • [10] Harmonic mappings onto parallel slit domains
    Dorff, Michael
    Nowak, Maria
    Woloszkiewicz, Magdalena
    ANNALES POLONICI MATHEMATICI, 2011, 101 (02) : 149 - 162