SOME BOUNDARY-VALUE PROBLEMS FOR GENERALIZED DIFFERENTIAL EQUATIONS

被引:6
作者
BEBERNES, JW [1 ]
KELLEY, W [1 ]
机构
[1] UNIV COLORADO,DEPT MATH,BOULDER,CO 80302
关键词
D O I
10.1137/0125003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:16 / 23
页数:8
相关论文
共 50 条
[41]   Lie symmetries of generalized Burgers equations: application to boundary-value problems [J].
O. O. Vaneeva ;
C. Sophocleous ;
P. G. L. Leach .
Journal of Engineering Mathematics, 2015, 91 :165-176
[42]   Lie symmetries of generalized Burgers equations: application to boundary-value problems [J].
Vaneeva, O. O. ;
Sophocleous, C. ;
Leach, P. G. L. .
JOURNAL OF ENGINEERING MATHEMATICS, 2015, 91 (01) :165-176
[43]   NONEXISTENCE OF SOLUTIONS TO SOME BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS [J].
Karakostas, George L. .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
[44]   BOUNDARY-VALUE PROBLEMS FOR MAXWELL EQUATIONS [J].
GUDOVICH, IS ;
KULIKOV, IM ;
KREIN, SG .
DOKLADY AKADEMII NAUK SSSR, 1972, 207 (02) :321-&
[45]   Two-Point Boundary-Value Problems for Differential Equations with Generalized Piecewise-Constant Argument [J].
Assanova, Anar T. ;
Uteshova, Roza E. .
UKRAINIAN MATHEMATICAL JOURNAL, 2024, 76 (05) :705-722
[46]   Nonlocal boundary-value problems for systems of linear partial differential equations [J].
Goi T.P. ;
Ptashnyk B.I. .
Ukrainian Mathematical Journal, 1997, 49 (11) :1659-1670
[47]   REDUCTION METHOD FOR DIFFERENTIAL EQUATIONS FOR BOUNDARY-VALUE PROBLEMS .1. [J].
SCHRODER, J ;
TROTTENBERG, U .
NUMERISCHE MATHEMATIK, 1973, 22 (01) :37-68
[48]   NONLINEAR BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS [J].
PAVEL, NH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1975, 50 (02) :373-383
[50]   THE SOLUTION OF BOUNDARY-VALUE PROBLEMS FOR THE GENERALIZED CREEP EQUATIONS WITH CONDITIONS IN THE FORM OF INEQUALITIES ON THE BOUNDARY [J].
KHLUDNEV, AM .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1984, 48 (01) :23-27