COMPETITION IN RAMPED TURING STRUCTURES

被引:78
|
作者
BORCKMANS, P [1 ]
DEWIT, A [1 ]
DEWEL, G [1 ]
机构
[1] UNIV LIBRE BRUXELLES, CTR NONLINEAR PHENOMENA & COMPLEX SYST, B-1050 BRUSSELS, BELGIUM
关键词
D O I
10.1016/0378-4371(92)90261-N
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Stationary pattern selection and competition in the uniform Brusselator in two (2D) and three (3D) dimensions are reviewed, including reentrant hexagonal and striped zig-zag phases. Influences of linear or chain-like profiles of the pool chemicals on this selection are presented in the form of numerical experiments. The relation with the recent experimental patterns obtained with the CIMA reaction is discussed.
引用
收藏
页码:137 / 157
页数:21
相关论文
共 50 条
  • [1] Selection and competition of Turing patterns
    Peña, B
    Pérez-García, C
    EUROPHYSICS LETTERS, 2000, 51 (03): : 300 - 306
  • [2] CHAOTIC TURING STRUCTURES
    SOLE, RV
    BASCOMPTE, J
    PHYSICS LETTERS A, 1993, 179 (4-5) : 325 - 331
  • [3] Nanoscale Turing structures
    Dziekan, Piotr
    Hansen, J. S.
    Nowakowski, Bogdan
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (12):
  • [4] THE SEARCH FOR TURING STRUCTURES
    BORCKMANS, P
    DEWEL, G
    WALGRAEF, D
    KATAYAMA, Y
    JOURNAL OF STATISTICAL PHYSICS, 1987, 48 (5-6) : 1031 - 1044
  • [5] From Turing structures to chemomechanics
    Boissonade, Jacques
    Dulos, Etiennette
    De Kepper, Patrick
    ACTUALITE CHIMIQUE, 2009, (336): : 17 - 21
  • [6] REENTRANT HEXAGONAL TURING STRUCTURES
    VERDASCA, J
    DEWIT, A
    DEWEL, G
    BORCKMANS, P
    PHYSICS LETTERS A, 1992, 168 (03) : 194 - 198
  • [7] Reentrant hexagonal Turing structures
    Verdasca, J.
    de Wit, A.
    Dewel, G.
    Borckmans, P.
    Physica D: Nonlinear Phenomena, 1992, 58 (1-4)
  • [8] SUBCRITICAL TRANSITIONS TO TURING STRUCTURES
    JENSEN, O
    PANNBACKER, VO
    DEWEL, G
    BORCKMANS, P
    PHYSICS LETTERS A, 1993, 179 (02) : 91 - 96
  • [9] Turing bifurcation in nonlinear competition models with delay
    Choudhury, SR
    Fosser, C
    QUARTERLY OF APPLIED MATHEMATICS, 1996, 54 (01) : 33 - 61
  • [10] From quasi-2D to 3D Turing patterns in ramped systems
    Dulos, E
    Davies, P
    Rudovics, B
    DeKepper, P
    PHYSICA D, 1996, 98 (01): : 53 - 66