Numerical quadratures and orthogonal polynomials

被引:0
作者
Milovanovic, Gradimir V. [1 ]
机构
[1] Megatrend Univ, Fac Comp Sci, Bulevar Umetnosti 29, Novi Beograd 11070, Serbia
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2011年 / 56卷 / 02期
关键词
Quadrature formula; node; weight; maximal degree of exactness; orthogonal polynomial; quasi-orthogonal polynomial; s-orthogonal polynomial; sigma-orthogonal polynomial; multiple orthogonal polynomial;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Orthogonal polynomials of different kinds as the basic tools play very important role in construction and analysis of quadrature formulas of maximal and nearly maximal algebraic degree of exactness. In this survey paper we give an account on some important connections between orthogonal polynomials and Gaussian quadratures, as well as several types of generalized orthogonal polynomials and corresponding types of quadratures with simple and multiple nodes. Also, we give some new results on a direct connection of generalized Birkhoff-Young quadratures for analytic functions in the complex plane with multiple orthogonal polynomials.
引用
收藏
页码:449 / 464
页数:16
相关论文
共 45 条
[1]   Multiple orthogonal polynomials [J].
Aptekarev, AI .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) :423-447
[2]   NUMERICAL QUADRATURE OF ANALYTIC AND HARMONIC FUNCTIONS [J].
BIRKHOFF, G ;
YOUNG, D .
JOURNAL OF MATHEMATICS AND PHYSICS, 1950, 29 (03) :217-221
[3]   ON A CLASS OF GAUSS-LIKE QUADRATURE-RULES [J].
BORGES, CF .
NUMERISCHE MATHEMATIK, 1994, 67 (03) :271-288
[4]   Quasi-orthogonality with applications to some families of classical orthogonal polynomials [J].
Brezinski, C ;
Driver, KA ;
Redivo-Zaglia, M .
APPLIED NUMERICAL MATHEMATICS, 2004, 48 (02) :157-168
[5]   On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line [J].
Bultheel, Adhemar ;
Cruz-Barroso, Ruyman ;
Van Barel, Marc .
CALCOLO, 2010, 47 (01) :21-48
[6]  
Chakalov L, 1948, C R ACAD BULGARE SCI, V1, P9
[7]  
CHAKALOV L, 1995, E J APPROX, V1, P261
[8]  
Chakalov L, 1957, COLLOQ MATH-WARSAW, V5, P69, DOI DOI 10.4064/CM-5-1-69-73
[9]  
Davis P. J., 1975, METHODS NUMERICAL IN
[10]  
Freud G, 1971, ORTHOGONAL POLYNOMIA