OPTIMAL INITIAL VALUE CONTROL FOR THE MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATION

被引:0
|
作者
Veklych, R. A. [1 ]
Semenov, V. V. [1 ]
Lyashko, S. I. [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine
来源
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY | 2016年 / 06期
关键词
D O I
暂无
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In this paper an initial value control problem with a quadratic cost function is considered for a system governed by a diffusion equation with a linear combination of Caputo time-fractional derivatives in an open bounded domain. We show the existence of the optimal solution by proving the existence of the weakly convergent minimization sequence satisfying the state equation. The uniqueness follows directly from the strong convexity of the cost function.
引用
收藏
页码:100 / 103
页数:4
相关论文
共 50 条
  • [1] Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation
    Luchko, Yury
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (02) : 538 - 548
  • [2] Initial boundary value problems for a multi-term time fractional diffusion equation with generalized fractional derivatives in time
    Zhou, Shuang-Shuang
    Rashid, Saima
    Rauf, Asia
    Kubra, Khadija Tul
    Alsharif, Abdullah M.
    AIMS MATHEMATICS, 2021, 6 (11): : 12114 - 12132
  • [3] Simultaneous inversion of the potential term and the fractional orders in a multi-term time-fractional diffusion equation
    Sun, L. L.
    Li, Y. S.
    Zhang, Y.
    INVERSE PROBLEMS, 2021, 37 (05)
  • [4] Numerical Inversion for the Initial Distribution in the Multi-Term Time-Fractional Diffusion Equation Using Final Observations
    Sun, Chunlong
    Li, Gongsheng
    Jia, Xianzheng
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (06) : 1525 - 1546
  • [5] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Y. S. Li
    L. L. Sun
    Z. Q. Zhang
    T. Wei
    Numerical Algorithms, 2019, 82 : 1279 - 1301
  • [6] SIMULTANEOUS INVERSION OF THE SOURCE TERM AND INITIAL VALUE OF THE MULTI-TERM TIME FRACTIONAL SLOW DIFFUSION EQUATION
    Qiao, Li
    Li, Ruo-Hong
    Yang, Fan
    Li, Xiao-Xiao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (04): : 1903 - 1927
  • [7] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Li, Y. S.
    Sun, L. L.
    Zhang, Z. Q.
    Wei, T.
    NUMERICAL ALGORITHMS, 2019, 82 (04) : 1279 - 1301
  • [8] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    A. S. V. Ravi Kanth
    Neetu Garg
    The European Physical Journal Plus, 134
  • [9] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    Kanth, A. S. V. Ravi
    Garg, Neetu
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [10] Orthogonal spline collocation scheme for the multi-term time-fractional diffusion equation
    Qiao, Leijie
    Xu, Da
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (08) : 1478 - 1493