QUADRATIC CONTROL FOR LINEAR TIME-VARYING SYSTEMS

被引:67
作者
DAPRATO, G [1 ]
ICHIKAWA, A [1 ]
机构
[1] SHIZUOKA UNIV, FAC ENGN, HAMAMATSU, SHIZUOKA 432, JAPAN
关键词
D O I
10.1137/0328019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An infinite-dimensional linear time-varying system on the interval (-∞, ∞) is considered. We introduce three quadratic problems: the infinite horizon problem, and one-sided and two-sided average cost problems. A Riccati equation on (-∞, ∞) is considered first and sufficient conditions for the existence and uniqueness of a bounded solution are given. Then by dynamic programming the quadratic problems are solved. Similar problems in the stochastic case are considered.
引用
收藏
页码:359 / 381
页数:23
相关论文
共 41 条
[1]  
Amerio L., 1971, ALMOST PERIODIC FUNC
[2]  
Arnold L., 1974, STOCHASTIC DIFFERENT
[3]  
BALAKRISHNAN AV, 1973, LECTURE NOTES EC MAT
[4]  
BARBU V, 1983, HAMILTONJACOBI EQUAT
[5]  
Bensoussan, 1971, FILTRAGE OPTIMAL SYS
[6]   OPTIMAL CONTROL OF STOCHASTIC LINEAR DISTRIBUTED PARAMETER SYSTEMS [J].
BENSOUSSAN, A ;
VIOT, M .
SIAM JOURNAL ON CONTROL, 1975, 13 (04) :904-926
[7]  
COLONIUS F, 1985, 140 U BREM FORSCH SC
[8]  
CURTAIN F, 1978, LECTURE NOTES CONTRO, V8
[9]   SEPARATION PRINCIPLE FOR STOCHASTIC EVOLUTION EQUATIONS [J].
CURTAIN, RF ;
ICHIKAWA, A .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1977, 15 (03) :367-383