GEOMETRIC MATRICES AND AN INEQUALITY FOR (0,1)-MATRICES

被引:1
作者
VARGA, LE
机构
[1] Kamloops, BC V2E 2A5
关键词
D O I
10.1016/0012-365X(90)90207-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an m × n (0, 1)-matrix with row vectors R1,..., Rm and column vectors C1,..., Cn. If there exist integers α, β such that RiRj = α whenever Ri ≠ Rj and CiCj = β whenever Ci ≠ Cj, then A will be called geometric. (RiRj, CiCj are the usual dot products of the vectors involved.) The geometric matrices are classified, and it is shown that (apart from certain trivialities) every geometric matrix is based on a symmetric balanced incomplete block design. Assume that each column of A has a zero entry and that Ci ≠ Cj for some i and j. Under these assumptions it is shown that m · min{RiRj:Ri≠Rj}≤n · max{CiCj:Ci≠Cj}, and that equality occurs if and only if A is geometric. The results generalize a theorem of de Bruijn and Erdös concerning combinatorial designs. © 1990.
引用
收藏
页码:303 / 315
页数:13
相关论文
共 14 条
[1]  
BOUTEN B, 1965, B SOC MATH BELG, V17, P475
[2]   THE NONEXISTENCE OF CERTAIN FINITE PROJECTIVE PLANES [J].
BRUCK, RH ;
RYSER, HJ .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1949, 1 (01) :88-93
[3]   COMBINATORIAL PROBLEMS [J].
CHOWLA, S ;
RYSER, HJ .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1950, 2 (01) :93-99
[4]  
de Witte P., 1975, B SOC MATH BELG, V27, P115
[5]  
DE WITTE P., 1966, B SOC MATH BELG, V18, P133
[6]  
DEWITTE P, 1966, B SOC MATH BELG, V18, P430
[7]  
Erdos P., 1948, INDAG MATH, V10, P421
[8]  
Hanani H., 1954, SCI PUBL TECHNION, V6, P58
[9]  
Isbell J. R., 1959, P AM MATH SOC, V10, P216
[10]   ON SOME THEOREMS IN COMBINATORICS RELATING TO INCOMPLETE BLOCK DESIGNS [J].
MAJUMDAR, KN .
ANNALS OF MATHEMATICAL STATISTICS, 1953, 24 (03) :377-389