MICROSCOPIC THEORY OF NUCLEAR COLLECTIVE ROTATION .2. MICROSCOPIC DESCRIPTION OF DEFORMED-NUCLEI

被引:13
作者
HEROLD, H
机构
[1] Institut für Theoretische Physik, Universität Erlangen-Nürnberg
关键词
D O I
10.1088/0305-4616/5/3/005
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
For pt.I see ibid., vol.5, no.3, p.341 (1979). A unified treatment of collective rotation and internal motion in deformed nuclei is outlined. The description of internal motion by intrinsic wavefunctions, given in body-fixed particle coordinates, leads to the so called intrinsic Hamiltonian which depends on the definition of the body-fixed frame. The eigensolutions of this operator prove to be deformed. To determine these intrinsic wavefunctions, a doubly self-consistent problem has to be solved. If the HFB method is used, this means that the best possible reference frame in which the internal motion is described approximately by independent quasiparticles is determined (by specific decoupling).
引用
收藏
页码:351 / 357
页数:7
相关论文
共 8 条
[1]   SELFCONSISTENT CALCULATION OF NUCLEAR EQUILIBRIUM DEFORMATIONS [J].
DIETRICH, K ;
MANG, HJ ;
PRADAL, J .
ZEITSCHRIFT FUR PHYSIK, 1966, 190 (03) :357-&
[2]   MICROSCOPIC THEORY OF NUCLEAR COLLECTIVE ROTATION .1. GENERAL DESCRIPTION OF ROTATIONS [J].
HEROLD, H ;
RUDER, H .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1979, 5 (03) :341-350
[3]  
HEROLD H, 1976, THESIS U ERLANGEN
[4]  
Mang H. J., 1975, Physics Reports. Physics Letters Section C, V18c, P325, DOI 10.1016/0370-1573(75)90012-5
[5]   SOLUTION OF CONSTRAINED HARTREE-FOCK-BOGOLYUBOV EQUATIONS [J].
MANG, HJ ;
SAMADI, B ;
RING, P .
ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1976, 279 (03) :325-329
[6]  
NILSSON SG, 1955, K DANSKE VIDENSK SEL, V29
[7]  
RUDER H, 1969, Z NATURFORSCH PT A, VA 24, P1171
[8]   UNIFIED THEORY OF NUCLEAR ROTATIONS [J].
VILLARS, FMH ;
COOPER, G .
ANNALS OF PHYSICS, 1970, 56 (01) :224-&