ON THE OCCUPATION TIMES OF CONES BY BROWNIAN-MOTION

被引:8
作者
MEYRE, T
WERNER, W
机构
[1] CNRS,CAMBRIDGE CB2 1SB,ENGLAND
[2] UNIV CAMBRIDGE,DEPT PURE MATH & MATH STAT,STAT LAB,CAMBRIDGE CB2 1SB,ENGLAND
关键词
D O I
10.1007/BF01200504
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study some features concerning the occupation time A(t) of a d-dimensional cone C by Brownian motion. In particular, in the case where C is convex, we investigate the asymptotic behaviour of P(A(1) < u) as u --> 0, when the Brownian motion starts at the vertex of C. We also give the precise integral test, which decides whether a.s., lim inf(t --> infinity) A(t)/(tf(t)) = 0 or infinity for a decreasing function f.
引用
收藏
页码:409 / 419
页数:11
相关论文
共 13 条
[1]  
[Anonymous], 1940, COMPOS MATH, DOI DOI 10.1080/17442508508833361
[2]  
[Anonymous], 1964, PRINCIPLES RANDOM WA, DOI DOI 10.1007/978-1-4757-4229-9
[3]   RELATIONAL PROPERTIES OF RECURRENT MARKOV PROCESSES [J].
AZEMA, J ;
DUFLO, M ;
REVUZ, D .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 13 (3-4) :286-&
[4]  
BERTOIN J, 1994, SEMINAIRE PROBA 1583, V28, P138
[5]   ON HIGHER-DIMENSIONAL ANALOGS OF THE ARC-SINE LAW [J].
BINGHAM, NH ;
DONEY, RA .
JOURNAL OF APPLIED PROBABILITY, 1988, 25 (01) :120-131
[6]  
BURHHOLDER DL, 1977, ADV MATH, V26, P182
[7]   EXIT TIMES FROM CONES IN RN OF BROWNIAN-MOTION - REMARK [J].
DEBLASSIE, RD .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (01) :95-97
[8]  
DEBLASSIE RD, 1987, PROBAB THEORY REL, V74, P1
[9]  
HOBSON D, 1994, ANN I H POINCARE-PR, V30, P235
[10]  
MEYRE T, 1991, ANN I H POINCARE-PR, V27, P107