POWER-LAW DISTRIBUTION OF DISCHARGE IN IDEAL NETWORKS

被引:27
作者
DEVRIES, H [1 ]
BECKER, T [1 ]
ECKHARDT, B [1 ]
机构
[1] C V OSSIETZKY UNIV,INST CHEM & BIOL MEERES,D-26111 OLDENBURG,GERMANY
关键词
D O I
10.1029/94WR02178
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Data for several river networks show algebraically decaying distribution functions for the mean annual discharge and the dissipation rate (Rodriguez-Iturbe et al., 1992). We derived relation between the exponent alpha in the integrated mean annual discharge distribution P(Q greater than or equal to q) similar to q(-alpha) and the topological dimension D-t of the network, alpha = 1 - 1/D-t. Using the experimentally determined value D-t approximate to 1.8 (Tarboton et al., 1988) we find alpha approximate to 0.45, in good agreement with the data of (Rodriguez-Iturbe et al., 1992). For the random model (Shreve, 1967, 1969; Smart and Werner, 1974) we find an exponent of 1/2.
引用
收藏
页码:3541 / 3543
页数:3
相关论文
共 20 条
[1]   CHANNEL NETWORKS - A GEOMORPHOLOGICAL PERSPECTIVE [J].
ABRAHAMS, AD .
WATER RESOURCES RESEARCH, 1984, 20 (02) :161-188
[2]  
EIDON RH, 1975, TABLE SERIES PRODUCT
[3]  
Gardiner V., 1973, GEOGR ANN, V54, P147
[4]  
HORTON RE, 1945, GEOL SOC AM BULL, V56, P275, DOI 10.1130/0016-7606(1945)56[275:edosat]2.0.co
[5]  
2
[6]   ON THE FRACTAL DIMENSION OF STREAM NETWORKS [J].
LABARBERA, P ;
ROSSO, R .
WATER RESOURCES RESEARCH, 1989, 25 (04) :735-741
[7]  
LABARBERA P, 1990, WATER RESOUR RES, V26, P2245
[8]   FRACTAL STRUCTURE AND PROPERTIES OF STREAM NETWORKS [J].
LIU, TZ .
WATER RESOURCES RESEARCH, 1992, 28 (11) :2981-2988
[9]  
Mandelbrot B.B., 1983, AMJPHYS
[10]  
MORISAWA ME, 1962, GEOL SOC AM BULL, V73, P1025, DOI 10.1130/0016-7606(1962)73[1025:QGOSWI]2.0.CO