CONSTRUCTION OF GREEN'S FUNCTION OF THE NEUMANN PROBLEM IN A BALL

被引:0
作者
Sadybekov, M. A. [1 ]
Torebek, B. T. [1 ]
Turmetov, B. Kh. [2 ]
机构
[1] Inst Math & Math Modeling, 125 Pushkin St, Alma Ata 050010, Kazakhstan
[2] A Yasawi Int Kazakh Turkish Univ, 29 Sattarhanov St, Turkestan 161200, Kazakhstan
来源
EURASIAN MATHEMATICAL JOURNAL | 2016年 / 7卷 / 02期
关键词
Green's function; Neumann problem; Poisson equation; Laplace operator; Neumann kernel;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Representation of the Green's function of the classical Neumann problem for the Poisson equation in the unit ball of arbitrary dimension is given. In constructing this function we use the representation of the fundamental solution of the Laplace equation in the form of a series. It is shown that Green's function can be represented in terms of elementary functions and its explicit form can be written out. An explicit form of the Neumann kernel was constructed for n = 4 and n = 5.
引用
收藏
页码:100 / 105
页数:6
相关论文
共 13 条
[1]  
Bateman H., 1953, HIGHER TRANSCENDENTA, V2
[2]  
Begehr H, 2006, MATEMATICHE, V61, P395
[3]  
BITSADZE AV, 1986, DIFF EQUAT+, V22, P591
[4]  
Bouligand G, 1935, PROBLEM DERIVE OBLIQ
[5]  
Gradshteyn I. S., 2007, TABLE INTEGRALS SERI, V7th
[6]   Green function representation in the Dirichlet problem for polyharmonic equations in a ball [J].
Kal'menov, T. Sh. ;
Koshanov, B. D. ;
Nemchenko, M. Yu. .
DOKLADY MATHEMATICS, 2008, 78 (01) :528-530
[7]   Representation for the Green's function of the Dirichlet problem for polyharmonic equations in a ball [J].
Kal'menov, T. Sh. ;
Koshanov, B. D. .
SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (03) :423-428
[8]  
Kellog OD, 1970, FDN POTENTIAL THEORY
[9]  
Koshlyakov N. S., 1964, DIFFERENTIAL EQUATIO
[10]   On an explicit form of the Green function of the Robin problem for the Laplace operator in a circle [J].
Sadybekov, Makhmud A. ;
Turmetov, Batirkhan K. ;
Torebek, Berikbol T. .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2015, 6 (03) :163-172