On Class Numbers of Real Quadratic Fields with Certain Fundamental Discriminants

被引:0
作者
Pekin, Ayten [1 ]
Carus, Aydin [2 ]
机构
[1] Istanbul Univ, Fac Sci, Dept Math, Istanbul, Turkey
[2] Trakya Univ, Fac Engn, Dept Comp Engn, Edirne, Turkey
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2015年 / 8卷 / 04期
关键词
Class number; Real quadratic number field;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N denote the sets of positive integers and D is an element of N be square free, and let chi(D), h = h (D) denote the non-trivial Dirichlet character, the class number of the real quadratic field K = Q (root D), respectively. Ono proved the theorem in [2] by applying Sturm's Theorem on the congruence of modular form to Cohen's half integral weight modular forms. Later, Dongho Byeon proved a theorem and corollary in [1] by refining Ono's methods. In this paper, we will give a theorem for certain real quadratic fields by considering above mentioned studies. To do this, we shall obtain an upper bound different from current bounds for L(1, chi(D)) and use Dirichlet's class number formula.
引用
收藏
页码:526 / 529
页数:4
相关论文
共 4 条
[1]   Existence of certain fundamental discriminants and class numbers of real quadratic fields [J].
Byeon, D .
JOURNAL OF NUMBER THEORY, 2003, 98 (02) :432-437
[2]  
Ken O., 1999, COMPOS MATH, V119, P1
[3]   Explicit upper bounds on |L(1,χ)| (part three) [J].
Louboutin, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (02) :95-98
[4]   DIOPHANTINE EQUATIONS AND CLASS-NUMBERS [J].
MOLLIN, RA .
JOURNAL OF NUMBER THEORY, 1986, 24 (01) :7-19