SUBORDINATION PROPERTIES OF CERTAIN SUBCLASSES OF p-VALENT FUNCTIONS DEFINED BY AN INTEGRAL OPERATOR

被引:2
作者
Seoudy, T. M. [1 ]
机构
[1] Fayoum Univ, Fac Sci, Dept Math, Al Fayyum 63514, Egypt
来源
MATEMATICHE | 2016年 / 71卷 / 02期
关键词
p-valent functions; convex function; differential subordination; integral operator;
D O I
10.4418/2016.71.2.3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate inclusion relationships among certain classes of p-valent analytic functions which are defined by means of integral operator.
引用
收藏
页码:27 / 44
页数:18
相关论文
共 15 条
[1]  
Aouf MK, 1987, INT J MATH MATH SCI, V10, P733
[2]  
Bulboaca T., 2005, DIFFERENTIAL SUBORDI
[3]   Some inclusion properties of a certain family of integral operators [J].
Choi, JH ;
Saigo, M ;
Srivastava, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (01) :432-445
[4]  
Eenigenburg P., 1983, INT SERIES NUMERICAL, V64, P339
[6]   THE HARDY SPACE OF ANALYTIC-FUNCTIONS ASSOCIATED WITH CERTAIN ONE-PARAMETER FAMILIES OF INTEGRAL-OPERATORS [J].
JUNG, IB ;
KIM, YC ;
SRIVASTAVA, HM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 176 (01) :138-147
[7]  
Li J.L., 2006, INT J MATH MATH SCI, V2006, P1, DOI [10.1155/IJMMS/2006/76782, DOI 10.1155/IJMMS/2006/76782]
[8]  
MaGregor T.H., 1963, P AM MATH SOC, V14, P514, DOI [DOI 10.1090/S0002-9939-1963-0148891-3, 10.1090/S0002-9939-1963-0148891-3]
[9]  
Miller S. S., 2000, SERIES MONOGRAPHS TX, V225
[10]  
MOCANU P. T., 1981, MATH CLUJ, V23, P225