Adaptive Real-Time Emotion Recognition from Body Movements

被引:16
作者
Wang, Weiyi [1 ,3 ]
Enescu, Valentin [1 ,3 ]
Sahli, Hichem [1 ,2 ,3 ]
机构
[1] Vrije Univ Brussel, AVSP ETRO, B-1050 Brussels, Belgium
[2] Interuniv Microelect Ctr IMEC, Heverlee, Belgium
[3] Vrije Univ Brussel, Dept Elect & Informat ETRO, Pl Laan 2, B-1050 Brussels, Belgium
关键词
Emotion recognition; random forests; semisupervised learning; online learning; real-time system;
D O I
10.1145/2738221
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a real-time system that continuously recognizes emotions from body movements. The combined low-level 3D postural features and high-level kinematic and geometrical features are fed to a Random Forests classifier through summarization (statistical values) or aggregation (bag of features). In order to improve the generalization capability and the robustness of the system, a novel semisupervised adaptive algorithm is built on top of the conventional Random Forests classifier. The MoCap UCLIC affective gesture database (labeled with four emotions) was used to train the Random Forests classifier, which led to an overall recognition rate of 78% using a 10-fold cross-validation. Subsequently, the trained classifier was used in a stream-based semisupervised Adaptive Random Forests method for continuous unlabeled Kinect data classification. The very low update cost of our adaptive classifier makes it highly suitable for data stream applications. Tests performed on the publicly available emotion datasets (body gestures and facial expressions) indicate that our new classifier outperforms existing algorithms for data streams in terms of accuracy and computational costs.
引用
收藏
页数:21
相关论文
共 60 条
[1]   Human motion analysis: A review [J].
Aggarwal, JK ;
Cai, Q .
IEEE NONRIGID AND ARTICULATED MOTION WORKSHOP, PROCEEDINGS, 1997, :90-102
[2]   Action and Emotion Recognition from Point Light Displays: An Investigation of Gender Differences [J].
Alaerts, Kaat ;
Nackaerts, Evelien ;
Meyns, Pieter ;
Swinnen, Stephan P. ;
Wenderoth, Nicole .
PLOS ONE, 2011, 6 (06)
[3]   Evidence for distinct contributions of form and motion information to the recognition of emotions from body gestures [J].
Atkinson, Anthony P. ;
Tunstall, Mary L. ;
Dittrich, Winand H. .
COGNITION, 2007, 104 (01) :59-72
[4]   Emotion perception from dynamic and static body expressions in point-light and full-light displays [J].
Atkinson, AP ;
Dittrich, WH ;
Gemmell, AJ ;
Young, AW .
PERCEPTION, 2004, 33 (06) :717-746
[5]   Introducing the Geneva Multimodal Expression Corpus for Experimental Research on Emotion Perception [J].
Baenziger, Tanja ;
Mortillaro, Marcello ;
Scherer, Klaus R. .
EMOTION, 2012, 12 (05) :1161-1179
[6]  
Baltrusaitis T., 2011, Proceedings 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG 2011), P909, DOI 10.1109/FG.2011.5771372
[7]   Multimodal Child-Robot Interaction: Building Social Bonds [J].
Belpaeme, Tony ;
Baxter, Paul ;
Read, Robin ;
Wood, Rachel ;
Cuayahuitl, Heriberto ;
Kiefer, Bernd ;
Racioppa, Stefania ;
Kruijff-Korbayova, Ivana ;
Athanasopoulos, Georgios ;
Enescu, Valentin ;
Looije, Rosemarijn ;
Neerincx, Mark ;
Demiris, Yiannis ;
Ros-Espinoza, Raquel ;
Beck, Aryel ;
Carinamero, Lola ;
Hiolle, Antione ;
Lewis, Matthew ;
Baroni, Ilaria ;
Nalin, Marco ;
Cosi, Piero ;
Paci, Giulio ;
Tesser, Fabio ;
Sommavilla, Giacomo ;
Humbert, Remi .
JOURNAL OF HUMAN-ROBOT INTERACTION, 2012, 1 (02) :33-53
[8]  
Bernhardt Daniel, 2010, 787 U CAMBR COMP LAB
[9]   A categorical approach to affective gesture recognition [J].
Bianchi-Berthouze, N ;
Klemsmith, A .
CONNECTION SCIENCE, 2003, 15 (04) :259-269
[10]  
Bianchi-Berthouze Nadia, 2008, P EM HCI, P74