A Geostatistical Block Simulation Approach for Generating Fine-scale Categorical Thematic Maps from Coarse-scale Fraction Data

被引:0
|
作者
Park, No-Wook [1 ]
Lee, Kiwon [2 ]
机构
[1] Inha Univ, Dept Geoinformat Engn, Incheon 402751, South Korea
[2] Hansung Univ, Dept Software Syst Engn, Seoul 136792, South Korea
来源
JOURNAL OF THE KOREAN EARTH SCIENCE SOCIETY | 2011年 / 32卷 / 06期
关键词
change of support; variogram; simulation; land-cover map;
D O I
10.5467/JKESS.2011.32.6.525
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In any applications using various types of spatial data, it is very important to account for the scale differences among available data sets and to change the scale to the target one as well. In this paper, we propose to use a geostatistical downscaling approach based on vaiorgram deconvloution and block simulation to generate fine-scale categorical thematic maps from coarse-scale fraction data. First, an iterative variogram deconvolution method is applied to estimate a point-support variogram model from a block-support variogram model. Then, both a direct sequential simulation based on area-to-point kriging and the estimated point-support variogram are applied to produce alternative fine-scale fraction realizations. Finally, a maximum a posteriori decision rule is applied to generate the fine-scale categorical thematic maps. These analytical steps are illustrated through a case study of land-cover mapping only using the block fraction data of thematic classes without point data. Alternative fine-scale fraction maps by the downscaling method presented in this study reproduce the coarse-scale block fraction values. The final fine-scale land-cover realizations can reflect overall spatial patterns of the reference land-cover map, thus providing reasonable inputs for the impact assessment in change of support problems.
引用
收藏
页码:525 / 536
页数:12
相关论文
共 50 条
  • [1] Coarse-scale PDEs from fine-scale observations via machine learning
    Lee, Seungjoon
    Kooshkbaghi, Mahdi
    Spiliotis, Konstantinos
    Siettos, Constantinos I.
    Kevrekidis, Ioannis G.
    CHAOS, 2020, 30 (01)
  • [2] Integrating coarse-scale uncertain soil moisture data into a fine-scale hydrological modelling scenario
    Vernieuwe, H.
    De Baets, B.
    Minet, J.
    Pauwels, V. R. N.
    Lambot, S.
    Vanclooster, M.
    Verhoest, N. E. C.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (10) : 3101 - 3114
  • [3] Updating coarse-scale species distribution models using small fine-scale samples
    Gaston, Aitor
    Garcia-Vinas, Juan I.
    ECOLOGICAL MODELLING, 2010, 221 (21) : 2576 - 2581
  • [4] Geostatistical integration of linear coarse scale and fine scale data
    Liu, Yongshe
    Journel, Andre G.
    PROCEEDINGS OF THE IAMG '07: GEOMATHEMATICS AND GIS ANALYSIS OF RESOURCES, ENVIRONMENT AND HAZARDS, 2007, : 401 - +
  • [5] Efficient conditioning of 3D fine-scale reservoir model to multiphase production data using streamline-based coarse-scale inversion and geostatistical downscaling
    Tran, TT
    Wen, XH
    Behrens, RA
    SPE JOURNAL, 2001, 6 (04): : 364 - 374
  • [6] A package for geostatistical integration of coarse and fine scale data
    Liu, Yongshe
    Journel, Andre G.
    COMPUTERS & GEOSCIENCES, 2009, 35 (03) : 527 - 547
  • [7] Geostatistical Downscaling of Coarse Scale Remote Sensing Data and Integration with Precise Observation Data for Generation of Fine Scale Thematic Information
    Park, No-Wook
    KOREAN JOURNAL OF REMOTE SENSING, 2013, 29 (01) : 69 - 79
  • [8] Simultaneous fine- and coarse-scale reservoir description using static and dynamic data
    Gajraj, A
    Kelkar, M
    IN SITU, 1996, 20 (04): : 395 - 411
  • [9] Identifying high residency areas of the threatened St. Lawrence beluga whale from fine-scale movements of individuals and coarse-scale movements of herds
    Lefebvre, Sebastien Lemieux
    Michaud, Robert
    Lesage, Veronique
    Berteaux, Dominique
    MARINE ECOLOGY PROGRESS SERIES, 2012, 450 : 243 - 257
  • [10] Accuracy of coarse-scale land quality maps as a function of the upscaling procedure used for soil data
    Hennings, V
    GEODERMA, 2002, 107 (3-4) : 177 - 196