ON A RELATIONSHIP BETWEEN USPENSKY THEOREM AND POISSON APPROXIMATIONS

被引:31
作者
DEHEUVELS, P
PFEIFER, D
机构
[1] UNIV OLDENBURG, D-2900 OLDENBURG, FED REP GER
[2] UNIV PARIS 06, F-92340 BOURG LA REINE, FRANCE
关键词
D O I
10.1007/BF00049425
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:671 / 681
页数:11
相关论文
共 14 条
[1]   ON THE RATE OF POISSON CONVERGENCE [J].
BARBOUR, AD ;
HALL, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1984, 95 (MAY) :473-480
[2]   ASYMPTOTIC EXPANSIONS IN THE POISSON LIMIT-THEOREM [J].
BARBOUR, AD .
ANNALS OF PROBABILITY, 1987, 15 (02) :748-766
[3]  
CHENG B, 1964, B AM MATH SOC, V55, P396
[4]   A SEMIGROUP APPROACH TO POISSON APPROXIMATION [J].
DEHEUVELS, P ;
PFEIFER, D .
ANNALS OF PROBABILITY, 1986, 14 (02) :663-676
[5]  
DEHEUVELS P, 1987, SEMIGROUP FORUM, V34, P203
[6]  
DEHEUVELS P, 1986, PERSPECTIVES NEW DIR
[7]  
DEHEUVELS P, 1986, ASYMPTOTIC EXPANSION
[8]  
Le Cam L., 1960, PACIF J MATH, V10, P1181, DOI DOI 10.2140/PJM.1960.10.1181
[9]   A SEMIGROUP SETTING FOR DISTANCE MEASURES IN CONNECTION WITH POISSON APPROXIMATION [J].
PFEIFER, D .
SEMIGROUP FORUM, 1985, 31 (02) :201-205
[10]   A SEMIGROUP-THEORETIC PROOF OF POISSONS LIMIT LAW [J].
PFEIFER, D .
SEMIGROUP FORUM, 1983, 26 (3-4) :379-382