Port-Hamiltonian Systems Theory: An Introductory Overview

被引:446
作者
van der Schaft, Arjan [1 ]
Jeltsema, Dimitri [2 ]
机构
[1] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, Groningen, Netherlands
[2] Delft Univ Technol, Delft Inst Appl Math, Delft, Netherlands
来源
FOUNDATIONS AND TRENDS IN SYSTEMS AND CONTROL | 2014年 / 1卷 / 2-3期
关键词
D O I
10.1561/2600000002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An up-to-date survey of the theory of port-Hamiltonian systems is given, emphasizing novel developments and relationships with other formalisms. Port-Hamiltonian systems theory yields a systematic framework for network modeling of multi-physics systems. Examples from different areas show the range of applicability. While the emphasis is on modeling and analysis, the last part provides a brief introduction to control of port-Hamiltonian systems.
引用
收藏
页码:I / +
页数:24
相关论文
共 132 条
[1]  
ABRAHAM R, 1994, FDN MECH
[2]   A Lyapunov approach to incremental stability properties [J].
Angeli, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (03) :410-421
[3]   Multistability in systems with counter-clockwise input-output dynamics [J].
Angeli, David .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (04) :596-609
[4]   Systems with counterclockwise input-output dynamics [J].
Angeli, David .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (07) :1130-1143
[5]  
[Anonymous], 2007, THESIS U TWENTE
[6]  
[Anonymous], 1987, SYMPLECTIC GEOMETRY
[7]  
[Anonymous], 1993, ENG FLUID MECH
[8]   Passivity as a design tool for group coordination [J].
Arcak, Murat .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (08) :1380-1390
[9]  
Arnold V. I, 1989, MATH METHODS CLASSIC, VSecond, DOI DOI 10.1007/978-1-4757-1693-1
[10]  
Bamberg P., 1999, COURSE MATH STUDENTS