A STUDY ON MATRIX SUMMABILITY OF FOURIER SERIES

被引:0
作者
Yildiz, Sebnem [1 ]
机构
[1] Ahi Evran Univ, Dept Math, Kirsehir, Turkey
来源
ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES | 2018年 / 17卷 / 07期
关键词
summability factors; absolute matrix summability; Fourier series; infinite series; Holder inequality; Minkowski inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a main result dealing with absolute Riesz summability of Fourier series has been generalized to the vertical bar A, P-n vertical bar(k) summability method. Some new results concerning an application of absolute matrix summability to Fourier series have been obtained.
引用
收藏
页码:533 / 542
页数:10
相关论文
共 12 条
[1]   ON 2 SUMMABILITY METHODS [J].
BOR, H .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1985, 97 (JAN) :147-149
[2]   ON THE ABSOLUTE RIESZ-SUMMABILITY FACTORS [J].
BOR, H .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1994, 24 (04) :1263-1271
[3]   Some new results on absolute Riesz summability of infinite series and Fourier series [J].
Bor, Huseyin .
POSITIVITY, 2016, 20 (03) :599-605
[4]   Some new results on infinite series and Fourier series [J].
Bor, Huseyin .
POSITIVITY, 2015, 19 (03) :467-473
[5]  
Chen Kien-Kwong, 1945, ACAD SINICA SCI RECO, V1, P283
[6]  
Flett T. M., 1957, P LOND MATH SOC, Vs3-7, P113, DOI [10.1112/plms/s3-7.1.113, DOI 10.1112/PLMS/S3-7.1.113]
[7]  
Hardy G.H., 1949, DIVERGENT SERIES
[8]  
Mazhar S. M., 1972, INDIAN J MATH, V14, P45
[9]  
Mishra K. N., 1986, B I MATH ACAD SINICA, V14, P431
[10]  
Ozarslan H. S., 2015, AN STIINT U CUZA LAS, V61, P153