Chaos in vibrating systems with a limited power-supply

被引:37
作者
Krasnopolskaya, Tatyana S. [1 ]
Shvets, Alexander Yu. [2 ]
机构
[1] Ukrainian Acad Sci, Inst Mech, UA-252057 Kiev, Ukraine
[2] Inst Automat, UA-252155 Kiev, Ukraine
关键词
D O I
10.1063/1.165946
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New models and properties of forced oscillations of the various physical systems (pendulum and piezoceramic transducer) due to the interaction with the excitation device of limited power-supply are investigated in details. Using an analysis of the largest Lyapunov exponent for a complicated system-vibrating subsystem and exciter-the regions for three steady state regimes are determined, namely: stationary, periodic and chaotic.
引用
收藏
页码:387 / 395
页数:9
相关论文
共 15 条
[1]  
Auld B.A., 1973, ACOUSTIC FIELDS WAVE
[2]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[3]  
Dormand JR., 1980, J COMPUT APPL MATH, V6, P19, DOI [DOI 10.1016/0771-050X(80)90013-3, 10.1016/0771-050X(80)90013-3]
[4]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[5]  
Kononenko V. O., 1969, VIBRATING SYSTEM LTD
[6]  
Krasnopol'skaya T. S., 1977, SOY APPL MECH, V13, P187
[7]   CHAOTIC INTERACTIONS IN A PENDULUM-ENERGY SOURCE SYSTEM [J].
KRASNOPOLSKAYA, TS ;
SHVETS, AY .
SOVIET APPLIED MECHANICS, 1990, 26 (05) :500-504
[8]  
MILES J, 1984, PHYSICA D, V11, P309, DOI 10.1016/0167-2789(84)90013-7
[9]  
Miles J, 1962, Q APPL MATH, V20, P21
[10]  
Moon F.C., 1987, CHAOTIC VIBRATIONS