A TIGHT UPPER BOUND FOR THE NUMBER OF INTERSECTIONS BETWEEN 2 RECTANGULAR PATHS

被引:0
|
作者
TEO, KH
TUAN, TC
机构
[1] NATL UNIV SINGAPORE,DEPT INFORMAT SYST & COMP SCI,SINGAPORE 0511,SINGAPORE
[2] UNIV OKLAHOMA,SCH ELECT ENGN & COMP SCI,NORMAN,OK 73019
来源
BIT | 1991年 / 31卷 / 04期
关键词
COMPUTATIONAL GEOMETRY; INTERFERENCE; INTERSECTION; RECTANGULAR PATH; UPPER BOUND; VLSI LAYOUT;
D O I
10.1007/BF01933175
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The problem of finding the number of intersections between two geometric figures in the plane has been studied extensively in literature. In this paper, the geometric figure comprising a continuous rectilinear path (called rectangular path) is considered, and a tight (least) upper bound on I(P, Q), the number of intersections between two rectangular paths P and Q, is given.
引用
收藏
页码:598 / 606
页数:9
相关论文
共 50 条
  • [21] A TIGHT BOUND ON THE SET CHROMATIC NUMBER
    Sereni, Jean-Sebastien
    Yilma, Zelealem B.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (02) : 461 - 465
  • [22] A Tight Upper Bound on Mutual Information
    Hledik, Michal
    Sokolowski, Thomas R.
    Tkacik, Gasper
    2019 IEEE INFORMATION THEORY WORKSHOP (ITW), 2019, : 70 - 74
  • [23] A tight upper bound on discrete entropy
    Division of Communications Engineering, School of EEE, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore
    IEEE Int Symp Inf Theor Proc, 2157, (249):
  • [24] A tight upper bound on discrete entropy
    Mow, WH
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (02) : 775 - 778
  • [25] ON THE SIZE-RAMSEY NUMBER OF TIGHT PATHS
    Lu, Linyuan
    Wang, Zhiyu
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (03) : 2172 - 2179
  • [26] Tight upper bound on the outage probability of QSTBC
    Sezgin, Aydin
    Jorswieck, Eduard A.
    IEEE COMMUNICATIONS LETTERS, 2006, 10 (11) : 784 - 786
  • [27] A New Tight Upper Bound on the Entropy of Sums
    Fahs, Jihad
    Abou-Faycal, Ibrahim
    ENTROPY, 2015, 17 (12) : 8312 - 8324
  • [28] A TIGHT UPPER BOUND ON THE BAYESIAN PROBABILITY OF ERROR
    HASHLAMOUN, WA
    VARSHNEY, PK
    SAMARASOORIYA, VNS
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (02) : 220 - 224
  • [29] A new tight upper bound on the transposition distance
    Labarre, A
    ALGORITHMS IN BIOINFORMATICS, PROCEEDINGS, 2005, 3692 : 216 - 227
  • [30] An asymptotically tight bound on the adaptable chromatic number
    Molloy, Michael
    Thron, Giovanna
    JOURNAL OF GRAPH THEORY, 2012, 71 (03) : 331 - 351