TEMPERED BOEHMIANS AND ULTRADISTRIBUTIONS

被引:49
|
作者
MIKUSINSKI, P
机构
关键词
BOEHMIANS; ULTRADISTRIBUTIONS; FOURIER TRANSFORM;
D O I
10.2307/2160805
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An extension of the Fourier transform which is a one-to-one continuous mapping from the space of tempered Boehmians onto the space of Schwartz distributions is introduced. This shows that the space of tempered Boehmians can be identified with the space xi(1) of ultradistributions.
引用
收藏
页码:813 / 817
页数:5
相关论文
共 50 条
  • [1] The Cauchy Representation of Integrable and Tempered Boehmians
    Loonker, Deshna
    Banerji, Pradeep Kumar
    KYUNGPOOK MATHEMATICAL JOURNAL, 2007, 47 (04): : 481 - 493
  • [2] Kernel theorems for the spaces of tempered ultradistributions
    Lozanov-Crvenkovic, Z.
    Perisic, D.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (10) : 699 - 713
  • [4] Pseudodifferential operators of infinite order in spaces of tempered ultradistributions
    Bojan Prangoski
    Journal of Pseudo-Differential Operators and Applications, 2013, 4 : 495 - 549
  • [5] Convolution of n-dimensional tempered ultradistributions and field theory
    Bollini, CG
    Rocca, MC
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (01) : 59 - 76
  • [6] Convolution of n-Dimensional Tempered Ultradistributions and Field Theory
    C. G. Bollini
    M. C. Rocca
    International Journal of Theoretical Physics, 2004, 43 : 59 - 76
  • [7] Fourier sine (cosine) transform for ultradistributions and their extensions to tempered and ultraBoehmian spaces
    Al-Omari, S. K. Q.
    Loonker, Deshna
    Banerji, P. K.
    Kalla, S. L.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (06) : 453 - 462
  • [8] Boehmians and pseudoquotients
    Mikusinski, Piotr
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2011, 5 (02): : 192 - 204
  • [9] On the Wavelet Transform for Boehmians
    Abhishek Singh
    Aparna Rawat
    Shubha Singh
    P. K. Banerji
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2022, 92 : 331 - 336
  • [10] Boehmians and Fourier transform
    Karunakaran, V
    Kalpakam, NV
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2000, 9 (03) : 197 - 216