MAXIMUM-LIKELIHOOD-ESTIMATION OF THE ENTROPY OF AN ATTRACTOR

被引:163
作者
SCHOUTEN, JC [1 ]
TAKENS, F [1 ]
VANDENBLEEK, CM [1 ]
机构
[1] UNIV GRONINGEN,DEPT MATH & COMP SCI,9700 AV GRONINGEN,NETHERLANDS
来源
PHYSICAL REVIEW E | 1994年 / 49卷 / 01期
关键词
D O I
10.1103/PhysRevE.49.126
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, a maximum-likelihood estimate of the (Kolmogorov) entropy of an attractor is proposed that can be obtained directly from a time series. Also, the relative standard deviation of the entropy estimate is derived; it is dependent on the entropy and on the number of samples used in the estimation.
引用
收藏
页码:126 / 129
页数:4
相关论文
共 9 条
[1]  
CLARKE AB, 1970, PROBABILITY RANDOM P, P169
[2]   ESTIMATION OF THE KOLMOGOROV-ENTROPY FROM A CHAOTIC SIGNAL [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1983, 28 (04) :2591-2593
[3]   DIMENSIONS AND ENTROPIES OF STRANGE ATTRACTORS FROM A FLUCTUATING DYNAMICS APPROACH [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICA D, 1984, 13 (1-2) :34-54
[4]  
GRASSBERGER P, 1987, CHAOS NONLINEAR SCI
[5]  
OLOFSEN E, 1992, B MATH BIOL, V54, P45, DOI 10.1007/BF02458619
[6]  
SCHOUTEN JC, 1993, UNPUB RRCHAOS MENU D
[7]  
TAKENS F, 1984, LECT NOTES MATH, V1125, P99
[8]  
TAKENS F, 1983, AT 13 C BRAS MAT RIO
[9]  
Takens F., 1981, DYNAMICAL SYSTEMS TU, V898, P366, DOI [10.1007/BFb0091924, 10.1007/BFB0091924, 10.1007/bfb0091924, DOI 10.1007/BFB0091924]