In immature rodent brain, the glutamate receptor agonist N-methyl-D-aspartate (NMDA) is a potent neurotoxin. In postnatal day (PND)-7 rats, intrastriatal injection of 25 nmol of NMDA results in extensive ipsilateral forebrain injury. In this study, we examined alterations in high-affinity [H-3]glutamate uptake (HAGU) in NMDA-lesioned striatum. HAGU was assayed in synaptosomes, prepared from lesioned striatum, the corresponding contralateral striatum, or unlesioned controls. Twenty-four hours after NMDA injection (25 nmol), HAGU declined 44 +/- 8% in lesioned tissue, compared with the contralateral striatum (mean +/- SEM, n = 6 assays, p < 0.006, paired t test). Doses of 5-25 nmol of NMDA resulted in increasing suppression of HAGU (5 nmol, n = 3; 12.5 nmol, n = 3; and 25 nmol, n = 5 assays; p < 0.01, regression analysis). The temporal evolution of HAGU suppression was biphasic. There was an early transient suppression of HAGU (-28 +/- 4% at 1 h; p < 0.03, analysis of variance, comparing changes at 0.5, 1, 2, and 3 h after lesioning); 1 or 5 days postinjury there was sustained loss of HAGU (at 5 days, -56 +/- 11%, n = 3, p < 0.03, paired t test, lesioned versus contralateral striata). Treatment with the noncompetitive NMDA antagonist MK-801 (1 mg/kg i.p.) attenuated both the early and subsequent irreversible suppression of HAGU (1 h postlesion -28 +/- 4%, n = 6 assays versus -12.6 +/- 5% with MK-801, n = 4, p = 0.005; 24 h postlesion, -44 +/- 8%, n = 5, versus +2.4 +/- 6%, n = 3 with MK-801, p = 0.01, Wilcoxon ranked sum tests). In immature brain excitotoxic lesions produce an acute reversible suppression of HAGU, and a delayed long-lasting reduction in HAGU secondary to brain injury. These data suggest that accumulation of endogenous glutamate, as a consequence of the acute disruption of HAGU, could contribute to the pathogenesis of excitotoxic neuronal injury.