Banach space properties of L(1) of a vector measure

被引:48
作者
Curbera, GP
机构
关键词
D O I
10.2307/2161909
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the space L(1)(nu) of real functions which are integrable with respect to a measure nu with values in a Banach space X. We study type and cotype for L(1)(nu). We study conditions on the measure nu and the Banach space X that imply that L(1)(nu) is a Hilbert space, or has the Dunford-Pettis property. We also consider weak convergence in L(1)(nu).
引用
收藏
页码:3797 / 3806
页数:10
相关论文
共 16 条
[1]  
Aliprantis C. D., 1985, POSITIVE OPERATORS, V119
[2]  
BARTLE RG, 1955, CAN J MATH, V7, P289
[3]  
Bessaga C., 1958, STUDIA MATH, V17, P151
[4]   WHEN L(1) OF A VECTOR MEASURE IS AN AL-SPACE [J].
CURBERA, GP .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 162 (02) :287-303
[5]   OPERATORS INTO L1 OF A VECTOR MEASURE AND APPLICATIONS TO BANACH-LATTICES [J].
CURBERA, GP .
MATHEMATISCHE ANNALEN, 1992, 293 (02) :317-330
[6]  
DIESTEL J, 1977, AM MATH SOC SURVEYS, V15
[7]  
Kluvanek I., 1975, VECTOR MEASURES CONT
[8]   INTEGRABILITY AND SUMMABILITY IN VECTOR-SPACES [J].
LEWIS, DR .
ILLINOIS JOURNAL OF MATHEMATICS, 1972, 16 (02) :294-&
[9]   INTEGRATION WITH RESPECT TO VECTOR MEAURES [J].
LEWIS, DR .
PACIFIC JOURNAL OF MATHEMATICS, 1970, 33 (01) :157-&
[10]  
Lindenstrauss J., 1979, CLASSICAL BANACH SPA