GLOBAL ESTIMATES FOR THE SCHRODINGER-EQUATION

被引:10
作者
BENARTZI, M
机构
[1] Institute of Mathematics, Hebrew University, Jerusalem
关键词
D O I
10.1016/0022-1236(92)90113-W
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let u = u(x, t) be a solution to the IVP for the Schrödinger equation iu1 = (-Δ + V(x))u ≡ Hu, u(x, 0) = u0(x) ε{lunate} PacL2(Rn) (Pac is the projection on the absolutely continuous subspace of H). Assume that for some ε > 0 the multiplication operator (1+|x|)1+iV(x):H1-ε(Rn) → L2(Rn) is bounded. Then u(x, t) = u1(x, t) + u2(x, t) where, for every s > 1 2, ∫ R ∫ Rn (1 + |x|2)-s|(1+H) 1 4u1(x,t)|2 dxdt ≤ C {norm of matrix}u0{norm of matrix}L2, and for every integer j, sup{norm of matrix}(I + H)ju2(·, t){norm of matrix}L ≤ Cj {norm of matrix} U0{norm of matrix}L tε{lunate}R. © 1992.
引用
收藏
页码:362 / 368
页数:7
相关论文
共 5 条
[1]  
[Anonymous], 1987, SCHRODINGER OPERATOR
[2]  
BENARTZI M, 1987, MEM AM MATH SOC, V66
[3]  
BENARTZI M, IN PRESS J ANAL MATH
[4]   LOCAL SMOOTHING PROPERTIES OF SCHRODINGER-EQUATIONS [J].
CONSTANTIN, P ;
SAUT, JC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1989, 38 (03) :791-810
[5]  
KATO T, 1989, REV MATH PHYS, V1