MODULI SPACES OF CURVES WITH HOMOLOGY CHAINS AND C=1 MATRIX MODELS

被引:1
作者
CATTANEO, AS
GAMBA, A
MARTELLINI, M
机构
[1] IST NAZL FIS NUCL, I-20133 MILAN, ITALY
[2] POLITECN TORINO, DIPARTIMENTO MATEMAT, I-10129 TURIN, ITALY
[3] INFN, I-27100 PAVIA, ITALY
关键词
D O I
10.1016/0370-2693(94)90721-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that introducing a periodic time coordinate in the models of Penner-Kontsevich type generalizes the corresponding constructions to the case of the moduli space S(g,n)k of curves C with homology chains gamma is-an-element-of H-1 (C, Z(k)). We make a minimal extension of the resulting models by adding a kinetic term, and we get a new matrix model which realizes a simple dynamics of Z(k)-chains on surfaces. This gives a representation of c = 1 matter coupled to two-dimensional quantam gravity with the target space being a circle of finite radius, as studied by Gross and Klebanov.
引用
收藏
页码:221 / 225
页数:5
相关论文
共 7 条
[1]  
GAMBA A, 1994, THESIS MILANO
[2]   VORTICES AND THE NON-SINGLET SECTOR OF THE C=1 MATRIX MODEL [J].
GROSS, DJ ;
KLEBANOV, IR .
NUCLEAR PHYSICS B, 1991, 354 (2-3) :459-474
[3]   INTERSECTION THEORY ON THE MODULI SPACE OF CURVES AND THE MATRIX AIRY FUNCTION [J].
KONTSEVICH, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :1-23
[4]  
MARCHESINI P, 1980, J MATH PHYS, V21, P1103
[5]  
PENNER RC, 1988, J DIFFER GEOM, V27, P35
[6]  
Strebel K., 1984, QUADRATIC DIFFERENTI
[7]  
WITTEN E, IASSNSHEP9174 PREPR