Endoparasitic insects are used as biological control agents to kill many species of insect pest. One key to the success of parasitoids that develop in the hemocoel of their host is their ability to knock out the host's immune system, inducing a decline in the responsiveness of a variety of cellular and humoral components so that parasitoid eggs are not encapsulated. In many species parasitized by braconid and ichneumonid wasps, host immunosuppression appears to be mediated by polydnaviruses (PDVs) injected by the female parasitoid into the host hemocoel. The viruses exhibit a complex and intimate genetic relationship with the wasp, since viral sequences are integrated within the wasp's chromosomal DNA. Here Mark Lavine and Nancy Beckage summarize the current evidence for mechanisms of virally induced host immunosuppression in parasitized insects, as well as the roles of other factors including wasp ovarian proteins and venom components, in suppressing hemocyte-mediated and humoral immune responses. Interestingly, in some species, the PDV-induced host immunosuppression appears transitory, with older parasitoid larvae probably exploiting other mechanisms to protect themselves from the host's immune system during the final stages of parasitism. During the final stages of parasitism, the parasitoids likely exploit other mechanisms of immunoevasion via antigen masking, antigen mimicry, or production of active inhibitors of the hemocyte-mediated encapsulation response as well as inhibiting melanization.