AUTOMATIC CORRECTION OF IMAGE INTENSITY NON-UNIFORMITY BY THE SIMPLEST TOTAL VARIATION MODEL

被引:4
作者
Belen Petro, Ana [1 ]
Sbert, Catalina [1 ]
Morel, Jean-Michel [2 ]
机构
[1] Univ Illes Balears, Dept Math & Comp Sci, Palma de Mallorca, Spain
[2] ENS, Ctr Math Applicat CMLA, Paris, France
基金
欧洲研究理事会;
关键词
Total variation; Poisson equation; gradient-based methods; non-uniform illumination; color perception theory;
D O I
10.4310/MAA.2014.v21.n1.a4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Extending if possible the spectacular applications of the total variation model in image processing, this paper proposes an extension of the TV model to attenuate the effects of non-uniform illumination in digital images. We compare the simplest possible linear algorithm and the simplest possible total-variation based algorithm. The comparison demonstrates once again that the total variation model improves images with minimal halo artifacts. We show that with a single contrast parameter (which keeps the same value in most experiments), the total variation model delivers state of the art results. They compare favourably to results obtained with more complex algorithms. Our algorithm is designed for all kinds of images, but with the special specification of making minimal image detail alteration thanks to a first order fidelity term, instead of the usual zero order term. Experiments on non-uniform medical images and on hazy images images illustrate significant perception gain.
引用
收藏
页码:91 / 104
页数:14
相关论文
共 30 条
[1]   Some First-Order Algorithms for Total Variation Based Image Restoration [J].
Aujol, Jean-Francois .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2009, 34 (03) :307-327
[2]   DUALITY METHODS FOR SOLVING VARIATIONAL-INEQUALITIES [J].
BERMUDEZ, A ;
MORENO, C .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1981, 7 (01) :43-58
[3]  
Bhat P, 2008, LECT NOTES COMPUT SC, V5303, P114, DOI 10.1007/978-3-540-88688-4_9
[4]  
Bracewell R.N., 1986, FOURIER TRANSFORM IT, VVolume 31999, DOI DOI 10.1007/978-3-662-05394-2
[5]  
Chambolle A, 2005, LECT NOTES COMPUT SC, V3757, P136, DOI 10.1007/11585978_10
[6]  
Chambolle A, 2004, J MATH IMAGING VIS, V20, P89
[7]  
Chan T., 2005, MATH MODELS COMPUTER, V17
[8]   A nonlinear primal-dual method for total variation-based image restoration [J].
Chan, TF ;
Golub, GH ;
Mulet, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (06) :1964-1977
[9]  
Fattal R, 2002, ACM T GRAPHIC, V21, P249
[10]  
Finlayson G., 2002, P 7 EUR C COMP VIS 4, P823