BATALIN-VILKOVISKY ALGEBRAS AND 2-DIMENSIONAL TOPOLOGICAL FIELD-THEORIES

被引:176
作者
GETZLER, E
机构
[1] Department of Mathematics, MIT, Cambridge, 02139, MA
关键词
D O I
10.1007/BF02102639
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By a Batalin-Vilkovisky algebra, we mean a graded commutative algebra A, together with an operator DELTA: A. --> A.+1 such that DELTA2 = 0, and [DELTA, a] - DELTAa is a graded derivation of A for all a is-an-element-of A. In this article, we show that there is a natural structure of a Batalin-Vilkovisky algebra on the cohomology of a topological conformal field theory in two dimensions. We make use of a technique from algebraic topology: the theory of operads.
引用
收藏
页码:265 / 285
页数:21
相关论文
共 20 条
[1]  
Arnold V. I., 1969, MAT ZAMETKI, V5, P227
[2]  
BEILINSON A, 1992, DUKE MATH J, V66, P63
[3]  
BOARDMAN JM, 1973, LECTURE NOTES MATH, V347
[4]  
Fadell E., 1962, MATH SCAND, V10, P111, DOI DOI 10.7146/MATH.SCAND.A-10517
[5]  
FULTON W, IN PRESS ANN MATH
[6]  
GERSTENHABER M, 1963, ANN MATH, V78, P59
[7]  
GETZLER E, 1993, OPERADS HOMOTOPY ALG
[8]  
GINZBURG V, 1993, KOSZUL DUALITY OPERA
[9]  
HOCHSCHILD G, 1962, T AM MATH SOC, V102, P383, DOI 10.1090/S0002-9947-1962-0142598-8
[10]  
HORAVA P, 1993, EFI9270 ENR FERM I P